Microcanonical Ensemble

Byungjoon Min

Department of Physics, Chungbuk National University

September 18, 2018

Thermodynamics and Statistical Mechanics

- Thermodynamics: Macroscopic state from macroscopic variables
- Statistical Mechanics: Macroscopic state from microscopic variables
- Classical and Quantum Statistical Mechanics

Thermodynamic Systems

- Isolated system (E,N,V) \rightarrow microcanonical ensemble
- Closed system (T,N,V) \rightarrow canonical ensemble
- Open system (T, $\mu, \mathrm{V}) \rightarrow$ grandcanonical ensemble

Number of State \& Ensembles

The number of state $\Omega \sim \Delta x \Delta p$ in the phase space (In quantum mechanics, $\Omega=\frac{\Delta x \Delta p}{h}$).

We consider a large collections or Ensemble of the system, not a single system.

Fundamental Postulate in Statistical Mechanics

$$
\begin{equation*}
P=\frac{1}{\Omega_{O}}, \tag{1}
\end{equation*}
$$

where Ω_{O} is the total number of possible states. Then, the probability of i state is

$$
\begin{equation*}
p_{i}=\frac{\Omega_{i}}{\Omega_{O}} . \tag{2}
\end{equation*}
$$

And, the expectation value of an observable is

$$
\begin{align*}
\langle X\rangle & =\sum_{i} X_{i} p_{i} \\
& =\frac{\sum_{i} X_{i} \Omega_{i}}{\Omega_{O}} . \tag{3}
\end{align*}
$$

Hamiltonian Mechanics

$$
\begin{equation*}
\frac{d q}{d t}=\frac{\partial H}{\partial p}, \quad \frac{d p}{d t}=-\frac{\partial H}{\partial q} . \tag{4}
\end{equation*}
$$

William Rowan Hamilton (1805 ~ 1865)

Lagrangian Mechanics

Action minimization:

$$
\begin{equation*}
\delta S=\delta \int L d t \tag{5}
\end{equation*}
$$

Lagrangian:

$$
\begin{equation*}
L=T-V . \tag{6}
\end{equation*}
$$

Lagrange Equation:

$$
\begin{equation*}
\frac{\partial L}{\partial q}-\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}=0 . \tag{7}
\end{equation*}
$$

Energy Conservation

We consider the Lagrangian, $L(q, \dot{q}, t)$. The time derivative of the Lagrangian is given by

$$
\begin{aligned}
\frac{d L}{d t} & =\frac{\partial L}{\partial q} \frac{d q}{d t}+\frac{\partial L}{\partial \dot{q}} \frac{d \dot{q}}{d t}+\frac{\partial L}{\partial t}, \\
& =\frac{\partial L}{\partial q} \dot{q}+\frac{\partial L}{\partial \dot{q}} \ddot{q}+\frac{\partial L}{\partial t} .
\end{aligned}
$$

Since the generalized momentum is $p=\frac{\partial L}{\partial \dot{q}}$,

$$
\begin{aligned}
\frac{d L}{d t} & =\dot{p} \dot{q}+p \ddot{q}+\frac{\partial L}{\partial t} \\
& =\frac{d}{d t}(p \dot{q})+\frac{\partial L}{\partial t}
\end{aligned}
$$

Lagrangian is not conserved with time.

Energy Conservation

$$
\frac{d L}{d t}=\frac{d}{d t}(p \dot{q})+\frac{\partial L}{\partial t} .
$$

If we define the Hamiltonian as

$$
\begin{equation*}
H=p \dot{q}-L \tag{8}
\end{equation*}
$$

the equation becomes:

$$
\begin{aligned}
\frac{d L}{d t} & =\frac{d}{d t}(H+L)+\frac{\partial L}{\partial t} . \\
\frac{d H}{d t} & =-\frac{\partial L}{\partial t}
\end{aligned}
$$

Then, Hamiltonian is conserved if the Lagrangian does not depend on time explicitly.

Hamilton's Equation

Hamiltonian is given by

$$
H=p \dot{q}-L
$$

The variation of the Hamiltonian is

$$
\begin{aligned}
\delta H & =\dot{q} \delta p+p \delta \dot{q}-\delta L \\
& =\dot{q} \delta p+p \delta \dot{q}-\frac{\partial L}{\partial q} \delta q-\frac{\partial L}{\partial \dot{q}} \delta \dot{q} .
\end{aligned}
$$

Since the generalized momentum is $p=\frac{\partial L}{\partial \dot{q}}$,

$$
\delta H=\dot{q} \delta p-\frac{\partial L}{\partial q} \delta q .
$$

Considering that H is a function of p and q,

$$
\delta H=\frac{\partial H}{\partial p} \delta p+\frac{\partial H}{\partial q} \delta q .
$$

Hamilton's Equation

We obtain the equations,

$$
\dot{q}=\frac{\partial H}{\partial p}, \quad-\frac{\partial L}{\partial q}=\frac{\partial H}{\partial q} .
$$

In the Lagrange equation,

$$
\frac{\partial L}{\partial q}=\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}=\frac{d}{d t} p=\dot{p} .
$$

Finally, we obtain the Hamilton's equations (two first order equations):

$$
\frac{d q}{d t}=\frac{\partial H}{\partial p}, \quad \frac{d p}{d t}=-\frac{\partial H}{\partial q} .
$$

Phase Space

$$
\frac{d q}{d t}=\frac{\partial H}{\partial p}, \quad \frac{d p}{d t}=-\frac{\partial H}{\partial q}
$$

Simple Harmonic Motion (from Wikipedia)

Simple Harmonic Oscillators

$$
\begin{aligned}
H & =\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} q^{2} . \\
2 m H & =p^{2}+(m \omega q)^{2} .
\end{aligned}
$$

Simple harmonic motion corresponds to a circular motion in phase space (p, q).

Liouville (Liouville-Gibbs) Theorem

Hamiltonian Mechanics

$$
\dot{q}=\frac{\partial H}{\partial p}, \quad \dot{p}=-\frac{\partial H}{\partial q}, \quad H(p, q)=\Delta E .
$$

We consider (p, q) as fluids with the density ρ and current J in phase space. Then, the continuity equation is

$$
\frac{\partial \rho}{\partial t}=-\nabla \cdot J,
$$

where the divergence is

$$
\nabla \cdot v=\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}=0 .
$$

Liouville (Liouville-Gibbs) Theorem

The current in phase space is $J=\rho \vec{v}$. Then, the continuity equation gives

$$
\begin{aligned}
\frac{\partial \rho}{\partial t} & =-\nabla \cdot J \\
& =-\sum_{i}\left[\frac{\partial \rho \dot{q}_{i}}{\partial q_{i}}+\frac{\partial \rho \dot{p}_{i}}{\partial p_{i}}\right] \\
& =-\sum_{i}\left[\frac{\partial \rho}{\partial q_{i}} \dot{q}_{i}+\rho \frac{\partial \dot{q}_{i}}{\partial q_{i}}+\frac{\partial \rho}{\partial p_{i}} \dot{p}_{i}+\rho \frac{\partial \dot{p}_{i}}{\partial p_{i}}\right] \\
& =-\sum_{i}\left[\frac{\partial \rho}{\partial q_{i}} \dot{q}_{i}+\frac{\partial \rho}{\partial p_{i}} \dot{p}_{i}\right] .
\end{aligned}
$$

Note that

$$
\frac{\partial \dot{q}}{\partial q}=\frac{\partial^{2} H}{\partial q \partial p}=\frac{\partial^{2} H}{\partial p \partial q}=-\frac{\partial \dot{p}}{\partial p} .
$$

Liouville (Liouville-Gibbs) Theorem

$$
\frac{\partial \rho}{\partial t}=-\boldsymbol{\nabla} \cdot J=-\sum_{i}\left[\frac{\partial \rho}{\partial q_{i}} \dot{q}_{i}+\frac{\partial \rho}{\partial p_{i}} \dot{p}_{i}\right] .
$$

Rearranging the equation:

$$
\begin{aligned}
\frac{d \rho}{d t} & =\frac{\partial \rho}{\partial t}+\sum_{i}\left[\frac{\partial \rho}{\partial q_{i}} \dot{q}_{i}+\frac{\partial \rho}{\partial p_{i}} \dot{p}_{i}\right] \\
& =\frac{\partial \rho}{\partial t}+\sum_{i}\left[\frac{\partial \rho}{\partial q_{i}} \frac{\partial H}{\partial p_{i}}-\frac{\partial \rho}{\partial p_{i}} \frac{\partial H}{\partial q_{i}}\right] \\
& =\frac{\partial \rho}{\partial t}+\{\rho, H\}=0,
\end{aligned}
$$

where the Poisson bracket $\{A, B\}$ is

$$
\begin{equation*}
\{A, B\}=\sum_{i}\left[\frac{\partial A}{\partial q_{i}} \frac{\partial B}{\partial p_{i}}-\frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial q_{i}}\right] . \tag{9}
\end{equation*}
$$

Liouville (Liouville-Gibbs) Theorem

$$
\frac{d \rho}{d t}=\frac{\partial \rho}{\partial t}+\{\rho, H\}=0 .
$$

- incompressible flow
- volume in phase space is conserved
- no attractors
- microcanonical ensembles are time independent

At the stationary state $\left(\frac{\partial \rho}{\partial t}=0\right),\{\rho, H\}$ becomes 0 if
(1) $\rho=$ const \rightarrow microcanonical ensemble
(0) $\rho=\rho[H(q, p)] \rightarrow$ canonical ensemble

Ergodicity

- Ergodicity: energy surface in phase space is thoroughly stirred by the time evolution.
- time average $=$ ensemble average

$$
\begin{aligned}
\langle f\rangle & =\frac{\int f(q, p) \rho(q, p) d q d p}{\int \rho(q, p) d q d p} \\
\bar{f} & =\frac{1}{T} \int_{0}^{T} f(q, p) d t
\end{aligned}
$$

Can we show that our systems are ergodic? Well, usually not.

Liouville-Gibbs Theorem \& Ergodicity

Foundation of the classical statistical mechanics. Liouville-Gibbs Theorem:

$$
\frac{d \rho}{d t}=\frac{\partial \rho}{\partial t}+\{\rho, H\}=0 .
$$

At the stationary state $\left(\frac{\partial \rho}{\partial t}=0\right),\{\rho, H\}$ becomes 0 if
(1) $\rho=$ const \rightarrow microcanonical ensemble
(0) $\rho=\rho[H(q, p)] \rightarrow$ canonical and grandcanonical ensemble

Ergodicity:

$$
\begin{aligned}
\langle f\rangle & =\frac{\int f(q, p) \rho(q, p) d q d p}{\int \rho(q, p) d q d p} . \\
\bar{f} & =\frac{1}{T} \int_{0}^{T} f(q, p) d t
\end{aligned}
$$

Lagrange Multipliers

Before going further, we need to study a mathematical tool, "Lagrange multipliers" in order to find extreme values with constraints. Find the extreme values of $f(x, y)$ with the constraint equation $g(x, y)=0$. Define another function $F(x, y, \lambda)=f(x, y)+\lambda g(x, y)$. Then,

$$
\begin{equation*}
\nabla F=\nabla[f+\lambda g]=0, \tag{10}
\end{equation*}
$$

at the maximum or minimum values. From this condition, we find

$$
\begin{equation*}
\frac{\partial F}{\partial x}=\frac{\partial F}{\partial y}=0 . \tag{11}
\end{equation*}
$$

Let $f(x, y)$ be the temperature distribution in the plane,

$$
f(x, y)=x^{2}+2 x y .
$$

Let some bug be restricted to live in a circle of radius 2 given by the constraint equation

$$
g(x, y)=x^{2}+y^{2}-4=0 .
$$

What is the hottest point in this bug's world?
Define $F(x, y, \lambda)=x^{2}+2 x y+\lambda\left(x^{2}+y^{2}-4\right)$. Then, we have

$$
\begin{align*}
& \frac{\partial F}{\partial x}=2 x+2 y+2 \lambda x=0, \tag{12}\\
& \frac{\partial F}{\partial y}=2 x+2 \lambda y=0 . \tag{13}
\end{align*}
$$

Therefore, $x=-\lambda y$ (Eq. 13) and $\lambda^{2}-\lambda+1=0$ (Eq. 12). Finally, $\lambda_{ \pm}=\frac{-1 \pm \sqrt{5}}{2}$ and $x=-\lambda y$.

Microcanonical Ensemble

Fixed energy and the number of particles. We define Ω is the accessible volume in phase space with $E \leq H \leq E+\Delta E$.

$$
\Omega=\int_{E \leq H \leq E+\Delta E} d P d Q,
$$

where $P=\left(p_{1}, p_{2}, \cdots, p_{3 N}\right)$ and $Q=\left(q_{1}, q_{2}, \cdots, q_{3 N}\right)$. The probability and the expectation value is then

$$
\begin{aligned}
P & =\frac{1}{\Omega} \\
\langle O\rangle & =\frac{1}{\Omega} \int_{E \leq H \leq E+\Delta E} O(P, Q) d P d Q .
\end{aligned}
$$

Conceptually the microcanonical ensemble approach is extremely simple, in practice it is not so easy.

Ideal Gas in a box

The Hamiltonian of N-ideal gas molecules in a box with volume V (i.e, helium atoms at high temperatures and low densities):

$$
\begin{equation*}
H=\sum_{i}^{3 N} \frac{p_{i}^{2}}{2 m}+V\left(x_{i}\right) \tag{14}
\end{equation*}
$$

where the potential $V\left(x_{i}\right)$ is given by 0 if $x \in V$ and otherwise $V=\infty$. The number (or volume) of states is

$$
\begin{aligned}
\Omega & =\int_{E \leq H \leq E+\Delta E} d P d Q \\
& =\int d Q \int_{E \leq H \leq E+\Delta E} d P \\
& =\Omega_{Q} \Omega_{P}=V^{N} \Omega(P),
\end{aligned}
$$

since there is $V=0$ in a box.

Momentum Space

The constant energy surface is a sphere in 3 N -dimensional space,

$$
\sum_{i=1}^{3 N} p_{i}^{2}=2 m E=R^{2}
$$

where radius $R=\sqrt{2 m E}$. If we define $\Sigma(E)$ as the volume of region $H \leq E$,

$$
\begin{aligned}
\Omega_{P} & =\int_{E \leq H \leq E+\Delta E} d P \\
& =\Sigma(E+\Delta E)-\Sigma(E) .
\end{aligned}
$$

Then, the volume Σ can be computed as

$$
\begin{aligned}
\Sigma(E) & =\int_{H \leq E} d P \\
& =\int_{\sum_{i=1}^{3 N} p_{i}^{2} \leq 2 m E} d P .
\end{aligned}
$$

Volume of n-dimensional Sphere

The volume of n-dimensional sphere with radius R is

$$
\begin{aligned}
V_{N}(R) & =\int_{\sum_{i}^{N} x_{i}^{2} \leq R^{2}} d x_{1} d x_{2} \cdots d x_{N} \\
& =R^{N} \int_{\sum_{i}^{N} y_{i}^{2} \leq 1} d y_{1} d y_{2} \cdots d y_{N} \\
& =R^{N} C_{N}
\end{aligned}
$$

where $C_{N}=\int_{\sum_{i}^{N} y_{i}^{2} \leq 1} d y_{1} d y_{2} \cdots d y_{N}$.

$$
\begin{aligned}
\sqrt{\pi}^{N} & =\left[\int_{-\infty}^{\infty} e^{-x^{2}} d x\right]^{N}=\int_{-\infty}^{\infty} d x_{1} d x_{2} \cdots d x_{N} e^{-\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{N}^{2}\right)} \\
& =\int_{-\infty}^{\infty} d V_{N}(R) e^{-\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{N}^{2}\right)}
\end{aligned}
$$

where $d V_{N}(R)=d x_{1} d x_{2} \cdots d x_{N}=N R^{N-1} C_{N} d R$. In n-dimensional polar coordinates,

$$
\begin{aligned}
\sqrt{\pi}^{N} & =\int_{0}^{\infty} N R^{N-1} C_{N} e^{-R^{2}} d R \\
& =C_{N} \frac{N}{2} \int_{0}^{\infty} X^{\frac{N}{2}-1} e^{-X} d X=C_{N} \frac{N}{2} \Gamma\left(\frac{N}{2}\right) \\
& =C_{N} \Gamma(N / 2+1)=C_{N}(N / 2)!,
\end{aligned}
$$

where $X=R^{2}$ and $d X=2 R d R$. Therefore,

$$
C_{N}=\frac{\pi^{N / 2}}{(N / 2)!}, \quad V_{N}(R)=R^{N} \frac{\pi^{N / 2}}{(N / 2)!}
$$

Momentum Space

The volume of region $H \leq E$

$$
\begin{aligned}
\Omega_{P} & =\Sigma(E+\Delta E)-\Sigma(E) \\
& =\Delta E \frac{\Sigma(E+\Delta E)-\Sigma(E)}{\Delta E} \\
& \approx \Delta E \frac{d \Sigma(E)}{d E},
\end{aligned}
$$

where

$$
\begin{align*}
\frac{d \Sigma(E)}{d E} & =\frac{d}{d E} \frac{\pi^{3 N / 2}(2 m E)^{3 N / 2}}{(3 N / 2)!} \\
& =\frac{3 N}{2} \frac{\pi^{3 N / 2}(2 m E)^{3 N / 2-1}}{(3 N / 2)!} \\
& =\frac{(2 \pi m)^{3 N / 2} E^{3 N / 2-1}}{(3 N / 2-1)!} . \tag{15}
\end{align*}
$$

Information and Entropy

- A measure for the lack of information (ignorance): $s_{i}=-\log P_{i}=\log \frac{1}{P_{i}}$.
- An average ignorance: $S=k_{B} \sum_{i} P_{i} s_{i}=-k_{B} \sum_{i} P_{i} \log P_{i}=-k_{B}\left\langle\log P_{i}\right\rangle$.
- We call S as "entropy" (Shannon's Entropy).
- k_{B} : Boltzmann's constant.

Maximum Entropy

The prior probability distribution maximizes entropy (the average ignorance) while respecting macroscopic constraints. A natural constraint of normalization is $\sum_{i} P_{i}=1$. Applying the Lagrange multiplier method,

$$
\nabla\left[S+\lambda\left(\sum_{i} P_{i}-1\right)\right]=0
$$

where ∇ stands for the derivative with respect to P. To be specific,

$$
\begin{aligned}
\frac{\partial}{\partial P}\left[S+\lambda\left(\sum_{i} P_{i}-1\right)\right] & =\frac{\partial}{\partial P}\left[-\sum_{i} P_{i} \log P_{i}+\lambda\left(\sum_{i} P_{i}-1\right)\right] \\
& =\sum_{i}\left[-\log P_{i}-P_{i} \frac{d \log P_{i}}{d P_{i}}+\lambda\right] \\
& =\sum_{i}\left[-\log P_{i}-1+\lambda\right]=0
\end{aligned}
$$

Maximum Entropy

It leads

$$
-\log P_{i}-1+\lambda=0 .
$$

Finally, we get

$$
P_{i}=e^{\lambda-1}=\text { const } . \equiv \frac{1}{\Omega}
$$

Boltzmann's Entropy

In an equilibrium state, the probability of i state is given by

$$
p_{i}=\frac{1}{\Omega} .
$$

Then the entropy can be expressed as

$$
\begin{aligned}
S & =-\left\langle\log P_{i}\right\rangle=-\left\langle\log \frac{1}{\Omega}\right\rangle \\
& =\log \Omega .
\end{aligned}
$$

We will see the meaning of entropy later.

Boltzmann and Shannon

Ludwig Boltzmann and Claude Shannon

Number of States \& Entropy

The total number (volume) of states is

$$
\begin{equation*}
\Omega=V^{N} \Delta E \frac{(2 \pi m)^{3 N / 2} E^{3 N / 2-1}}{(3 N / 2-1)!} . \tag{16}
\end{equation*}
$$

The entropy is then $k_{B} \log \Omega$, and

$$
\begin{aligned}
\log \Omega & =\log V^{N}+\log \Delta E+\frac{3 N}{2} \log (2 \pi m) \\
& +\left(\frac{3 N}{2}-1\right) \log E-\log (3 N / 2-1)! \\
& \approx N \log V+\frac{3 N}{2} \log (2 \pi m E)-(3 N / 2) \log (3 N / 2)+(3 N / 2) .
\end{aligned}
$$

Entropy for Ideal Gas

The entropy is

$$
\begin{gathered}
S \approx N k_{B} \log V+\frac{3 N k_{B}}{2} \log (2 \pi m E)-\left(3 N k_{B} / 2\right) \log (3 N / 2)+\left(3 N k_{B} / 2\right) \\
\frac{1}{T}=\left(\frac{\partial S}{\partial E}\right)_{V, N}=\frac{3 N k_{B}}{2 E} \\
\frac{P}{T}=\left(\frac{\partial S}{\partial V}\right)_{E, N}=\frac{N k_{B}}{V}
\end{gathered}
$$

Therefore, we can derive equipartition theorem and the equation of state for the ideal gas,

$$
E=\frac{3}{2} N k_{B} T, \quad P V=N k_{B} T .
$$

Gibbs Paradox

Compare $2 N$ particles in two boxes with volume V and $2 N$ particles in a box with volume $2 V$:

$$
\begin{aligned}
& S_{1}=2 k_{B} \log V^{N}, \\
& S_{2}=k_{B} \log (2 V)^{2 N} .
\end{aligned}
$$

Gibbs Paradox \& Gibbs factor

All particles are perfectly identical or indistinsuishable:

$$
\begin{aligned}
& S_{1}=2 k_{B} \log V^{N} / N! \\
& S_{2}=k_{B} \log (2 V)^{2 N} /(2 N)!
\end{aligned}
$$

Planck Constant

- h has the unit of momentum \times distance.
- The uncertainty principle: $\delta x \delta p \geq h$.

Applying two factors, we find the Sackur-Tetrode formula:

$$
\begin{align*}
S(N, V, E) & =k_{B} \log \Omega /\left(N!h^{3 n}\right) \\
& =N k_{B} \log \left[\frac{V}{N}\left(\frac{4 \pi m E}{3 N h^{2}}\right)^{3 / 2}\right]+N k_{B} \frac{5}{2} . \tag{17}
\end{align*}
$$

