Hydrogen Atom

Byungjoon Min
October 26, 2018

Hydrogen Atom

From Coulomb's law, the potential energy is

$$
V(r)=-\frac{e^{2}}{2 \pi \epsilon_{0}} \frac{1}{r} .
$$

Then, the radial equation of Schrödinger equation in the spherical coordinate, Then, we have radial and angular equations:

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}+\left[-\frac{e^{2}}{4 \pi \epsilon_{0}} \frac{1}{r}+\frac{\hbar^{2}}{2 m} \frac{l(l+1)}{r^{2}}\right] u=E u \tag{1}
\end{equation*}
$$

Hydrogen Atom

Defining

$$
\kappa=\frac{\sqrt{-2 m E}}{\hbar}, \quad \rho=\kappa r, \quad \rho_{0}=\frac{m e^{2}}{2 \pi \epsilon_{0} \hbar^{2} \kappa},
$$

so that

$$
\frac{d^{2} u}{d \rho^{2}}=\left[1-\frac{\rho_{0}}{\rho}+\frac{l(l+1)}{\rho^{2}}\right] u .
$$

Due to the asymtotic form of the solution as $\rho \rightarrow \infty$ and $\rho \rightarrow 0$, the solution should have the form:

$$
u(\rho)=\rho^{l+1} e^{-\rho} v(\rho)
$$

Hydrogen Atom

Finally, we have an equation with $v(\rho)$ as

$$
\rho \frac{d^{2} v}{d \rho^{2}}+2(l+1-\rho) \frac{d v}{d \rho}+\left[\rho_{0}-2(l+1)\right] v=0 .
$$

Trying a power series solution as

$$
v(\rho)-\sum_{j}^{\infty} c_{j} \rho^{j},
$$

we have the following recursion folmula of the coefficients:

$$
\begin{equation*}
c_{j+1}=\left[\frac{2(j+l+1)-\rho_{0}}{(j+1)(j+2 l+2)}\right] c_{j} . \tag{2}
\end{equation*}
$$

Hydrogen Atom

Note that for large j,

$$
\begin{aligned}
c_{j+1} & \approx \frac{2 j}{j(j+1)} c_{j}=\frac{2}{j+1} c_{j} \\
v(\rho) & \approx c_{0} \sum_{j=0}^{\infty} \frac{2^{j}}{j!} \rho^{j}=c_{0} e^{2 \rho}
\end{aligned}
$$

In order to prevent divergence at large ρ (equivalently large r), the series must terminate at some maximal integer $j_{\max }$. Therefore

$$
c\left(j_{\max }+l+1\right)-\rho_{0}=0
$$

Defining principal quantum number n as $n=j_{\max }+l+1$, we have

$$
\begin{aligned}
\rho_{0} & =2 n \\
E & =-\frac{\hbar^{2} \kappa^{2}}{2 m}
\end{aligned}
$$

Hydrogen Atom

The eigenvalue of Hydrogen Atom is then

$$
E_{n}=-\left[\frac{m}{2 \hbar^{2}}\left(\frac{e^{2}}{4 \pi \epsilon_{0}}\right)^{2}\right] \frac{1}{n^{2}}=\frac{E_{1}}{n^{2}}, \quad n=1,2,3, \cdots .
$$

And, the ground state is the case $n=1$:

$$
E_{1}=-\left[\frac{m}{2 \hbar^{2}}\left(\frac{e^{2}}{4 \pi \epsilon_{0}}\right)^{2}\right]=-13.6 \mathrm{eV}
$$

In general, the wave function of hydrogen atom can be represented with an associated Laguerre polynomial,

$$
\begin{equation*}
\psi_{n l m}=\sqrt{\left(\frac{2}{n a}\right)^{3} \frac{(n-l-1)!}{2 n[(n+1)!]^{3}}} e^{-r / n a}\left(\frac{2 r}{n a}\right)^{l}\left[L_{n-l-1}^{2 l+1}(2 r / n a)\right] Y_{l}^{m}(\theta, \phi) \tag{3}
\end{equation*}
$$

Spectrum of Hydrogen Atom

The difference between two states in hydrogen atom is

$$
\Delta E=E_{i}-E_{f}=-13.6 \mathrm{eV}\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right) .
$$

The energy of a photon is

$$
\begin{aligned}
& E=\hbar \omega=h \nu=\frac{h c}{\lambda} \\
& \frac{1}{\lambda}=R\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right),
\end{aligned}
$$

where $R=\frac{m}{4 \pi c \hbar^{3}}\left(\frac{e^{2}}{4 \pi \epsilon_{0}}\right)^{2}=1.097 \times 10^{7} m^{-1}$.

