Assignment 2

Byungjoon Min, Quantum Mechanics II (due date: September 18, 2018)

1 Pauli Matrices [30 pt]

The Pauli Matrices are a set of 2×2 complex matrices that describe the interaction of the spin of a particle with an external field. They are

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_k = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Obtain the eigenvalues and eigenvectors of these three matrices. Also check the matrices are hermitian.

2 Gram-Schmidt Orthogonalization [10 pt]

Griffith Problem A. 4.

3 Matrix Diagonalization and Unitary Matrix [20 pt]

Consider the matrix

$$M = \begin{pmatrix} 0 & -i & 0\\ i & 0 & 0\\ 0 & 0 & 0 \end{pmatrix},$$

3.1 Eigenvalues and Eigenvectors

Find the eigenvalues and the normalized eigenvectors of the matrix M.

3.2 Unitary Matrix

Find the unitary matrix U that diagonlizes M. Check the matrix is unitary.

3.3 Diagonalization

Show that $U^{\dagger}MU$ gives the diagonalized matrix.