Assignment 2

Byungjoon Min, Quantum Mechanics II
(due date: September 18, 2018)

1 Pauli Matrices [30 pt]

The Pauli Matrices are a set of 2×2 complex matrices that describe the interaction of the spin of a particle with an external field. They are

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{k}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Obtain the eigenvalues and eigenvectors of these three matrices. Also check the matrices are hermitian.

2 Gram-Schmidt Orthogonalization [10 pt]

Griffith Problem A. 4.

3 Matrix Diagonalization and Unitary Matrix [20 pt]

Consider the matrix

$$
M=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

3.1 Eigenvalues and Eigenvectors

Find the eigenvalues and the normalized eigenvectors of the matrix M.

3.2 Unitary Matrix

Find the unitary matrix U that diagonlizes M. Check the matrix is unitary.

3.3 Diagonalization

Show that $U^{\dagger} M U$ gives the diagonalized matrix.

