Measurements and the Uncertainty Principle

Byungjoon Min

September 17, 2018

Time Evolution and Collapse

There are two different types of physical processes:

- time evolution following quantum dynamics (either Schrödinger's or Heisenberg's pictures)
- measurements in which wavefunction abruptly collapses.

Measurements and Collapse

Well, these subtle issues are strongly related to the interpretation of quantum mechanics.

- We will not deal with it seriously.
- For now, just take the most population attitude to quantum mechanics, "shut up and calculate".
- Also, just let us define that a "measurement" is the kind of things that a scientist does in the laboratory.

Statistical Interpretation

$$
\begin{equation*}
\int_{a}^{b}|\Psi(x, t)|^{2} d x \tag{1}
\end{equation*}
$$

probability of finding the particle between a and b, at time t.

Max Born

Determinate State

Consider eigenvectors $|\psi\rangle$ corresponding to the eigenvalues q.

$$
\hat{Q}|\psi\rangle=q|\psi\rangle .
$$

Determinate states are eigenfunctions of \hat{Q}. Check the variance of \hat{Q} by using an operator $\hat{Q}-\langle Q\rangle$,

$$
\begin{equation*}
\sigma^{2}=\langle\psi|(\hat{Q}-\langle Q\rangle)^{2}|\psi\rangle=0 \tag{2}
\end{equation*}
$$

Expectation Value

For an eigenvector equation $\hat{Q}|n\rangle=q_{n}|n\rangle$.

$$
\begin{aligned}
c_{n} & =\langle n \mid S\rangle \\
& =\int d x\langle n \mid x\rangle\langle x \mid S\rangle \\
& =\int d x f_{n}(x)^{*} \Psi(x),
\end{aligned}
$$

where $\Psi(x)=\langle x \mid S\rangle$ and $f_{n}(x)=\langle x \mid n\rangle$. The expectation value of Q is

$$
\begin{aligned}
\langle Q\rangle & =\langle S| Q|S\rangle \\
& =\sum_{n} \sum_{m}\langle S \mid n\rangle\langle n| Q|m\rangle\langle m \mid S\rangle \\
& =\sum_{n} \sum_{m} c_{n}^{*}\langle n| Q|m\rangle c_{m}=\sum_{n} \sum_{m} q_{n} c_{n}^{*}\langle n \mid m\rangle c_{m} \\
& =\sum_{n} \sum_{m}^{m} q_{n} c_{n}^{*} c_{m} \delta_{n, m}=\sum_{n} q_{n} c_{n}^{*} c_{n} \\
& =\sum_{n} q_{n}\left|c_{n}\right|^{2}
\end{aligned}
$$

Compatible Observabales

Consider the eigenfunctions $\left|f_{i}\right\rangle$ corresponding to the eigenvalue a_{i} of the operator \hat{A},

$$
\begin{equation*}
\hat{A}\left|f_{i}\right\rangle=a_{i}\left|f_{i}\right\rangle \tag{3}
\end{equation*}
$$

If this eigenfunctions will be simultaneous eigenfunctions of another operator B with the eigenvalue b_{i},

$$
\begin{equation*}
\hat{B}\left|f_{i}\right\rangle=b_{i}\left|f_{i}\right\rangle, \tag{4}
\end{equation*}
$$

This implies that

$$
\begin{aligned}
\hat{A} \hat{B}\left|f_{i}\right\rangle & =A b_{i}\left|f_{i}\right\rangle=a b\left|f_{i}\right\rangle, \\
\hat{B} \hat{A}\left|f_{i}\right\rangle & =B a_{i}\left|f_{i}\right\rangle=a b\left|f_{i}\right\rangle, \\
(\hat{A} \hat{B}-\hat{B} \hat{A})\left|f_{i}\right\rangle & =0 .
\end{aligned}
$$

Compatible Observabales

More generally, $|S\rangle=\sum_{i} c_{i} f_{i}$ also holds the relation,

$$
\begin{aligned}
\sum_{i} c_{i}(\hat{A} \hat{B}-\hat{B} \hat{A})\left|f_{i}\right\rangle & =(\hat{A} \hat{B}-\hat{B} \hat{A}) \sum_{i} c_{i}\left|f_{i}\right\rangle \\
& =[A, B]|S\rangle=0
\end{aligned}
$$

Therefore, two observables are compatible each other, $[A, B]=0$.

Uncertainty Principle

We introduce an operator $\sigma_{A}=\hat{A}-\langle A\rangle$. The expectation value of the square of the operator is

$$
\begin{aligned}
\left\langle\sigma_{A}^{2}\right\rangle & =\langle\Psi|(\hat{A}-\langle A\rangle)^{2}|\Psi\rangle \\
& =\langle(\hat{A}-\langle A\rangle) \Psi \mid(\hat{A}-\langle A\rangle) \Psi\rangle=\langle f \mid f\rangle
\end{aligned}
$$

where $|f\rangle=(\hat{A}-\langle A\rangle)|\Psi\rangle$. Similarly, we define

$$
\left\langle\sigma_{B}^{2}\right\rangle=\langle g \mid g\rangle .
$$

Due to the Schwarz inequality,

$$
\begin{equation*}
\left\langle\sigma_{A}^{2}\right\rangle\left\langle\sigma_{B}^{2}\right\rangle=\langle f \mid f\rangle\langle g \mid g\rangle \geq|\langle g \mid f\rangle|^{2} \tag{5}
\end{equation*}
$$

Uncertainty Principle

$$
\begin{aligned}
\left\langle\sigma_{A}^{2}\right\rangle\left\langle\sigma_{B}^{2}\right\rangle & \geq|\langle\Psi|(\hat{A}-\langle A\rangle)(\hat{B}-\langle B\rangle)| \Psi\rangle\left.\right|^{2} \\
& =\left|\left\langle\sigma_{A} \sigma_{B}\right\rangle\right|^{2}
\end{aligned}
$$

We can rewrite the term $\sigma_{A} \sigma_{B}$ as

$$
\begin{aligned}
\sigma_{A} \sigma_{B} & =\frac{1}{2}\left(\sigma_{A} \sigma_{B}-\sigma_{A} \sigma_{B}\right)+\frac{1}{2}\left(\sigma_{A} \sigma_{B}+\sigma_{A} \sigma_{B}\right) \\
& =\frac{1}{2}\left[\sigma_{A}, \sigma_{B}\right]+\frac{1}{2}\left\{\sigma_{A}, \sigma_{B}\right\} \\
& =\frac{1}{2}[A, B]+\frac{1}{2}\left\{\sigma_{A}, \sigma_{B}\right\}
\end{aligned}
$$

where $\left[\sigma_{A}, \sigma_{B}\right]=[A, B]$. Note that $[A, B]$ is always anti-Hermitian $\left(X^{\dagger}=-X\right)$ and $\{A, B\}$ is Hermitian $\left(X^{\dagger}=X\right)$. Finally, we can conclude that

$$
\begin{equation*}
\left\langle\sigma_{A}^{2}\right\rangle\left\langle\sigma_{B}^{2}\right\rangle \geq \frac{1}{4}|\langle[A, B]\rangle|^{2} . \tag{6}
\end{equation*}
$$

Uncertainty Principle

As an example,

$$
\begin{aligned}
\left\langle\sigma_{x}^{2}\right\rangle\left\langle\sigma_{p}^{2}\right\rangle & \geq \frac{1}{4}|\langle[x, p]\rangle|^{2} \\
& =\frac{1}{4}|i \hbar|^{2}=\frac{\hbar^{2}}{4} .
\end{aligned}
$$

Thus, we can recover the standard uncertainty relation,

$$
\left\langle\sigma_{x}\right\rangle\left\langle\sigma_{p}\right\rangle \geq \frac{\hbar}{2} .
$$

Incompatible observables $([A, B] \neq 0)$ do not have common eigenvectors, so that they cannot be observed exactly at the same time.

Where to go next. . .

Three dimensional problems

