Operators

Byungjoon Min

September 10, 2018

Operators

Operators: When an operator meets a ket, it produces another ket. (cf. bra: When a bra meets a ket, it produces a scalar.)

- $\hat{M}|A\rangle=|B\rangle$.

Linear Operators

- $\hat{M} z|A\rangle=z|B\rangle$.
- $\hat{M}(|A\rangle+|B\rangle)=\hat{M}|A\rangle+\hat{M}|B\rangle$.

Matrix Representations

We have two kets and a operator with the following relation:
$|A\rangle=\sum_{i} a_{i}|i\rangle,|B\rangle=\sum_{i} b_{i}|i\rangle$, and

$$
\hat{M}|A\rangle=|B\rangle .
$$

Then,

$$
\sum_{i} \hat{M} a_{i}|i\rangle=\sum_{i} \hat{M}|i\rangle a_{i}=\sum_{i} b_{i}|i\rangle .
$$

Applying another basis bra $\langle j|$,

$$
\begin{equation*}
\sum_{i}\langle j| \hat{M}|i\rangle a_{i}=\sum_{i} b_{i}\langle j \mid i\rangle=\sum_{i} b_{i} \delta_{i j}=b_{j} . \tag{1}
\end{equation*}
$$

Matrix Representations

$$
\sum_{i}\langle j| \hat{M}|i\rangle a_{i}=b_{j}
$$

If we represent $\langle j| \hat{M}|i\rangle$ as an element of a matrix,

$$
\left(\begin{array}{cccc}
\langle 1| \hat{M}|1\rangle & \langle 1| \hat{M}|2\rangle & \langle 1| \hat{M}|3\rangle & \ldots \tag{2}\\
\langle 2| \hat{M}|1\rangle & \langle 2| \hat{M}|2\rangle & \langle 2| \hat{M}|3\rangle & \ldots \\
\langle 3| \hat{M}|1\rangle & \langle 3| \hat{M}|2\rangle & \langle 3| \hat{M}|3\rangle & \ldots \\
& \vdots & &
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots
\end{array}\right),
$$

then the meaning of this operator is transparent.

- Now we accept that as an axiom, all physical observable in quantum mechanics are operators such as $\hat{x}, \hat{p}, \hat{H}$, and \hat{L}.
- In general two matrices do not commute $[A, B] \neq 0$.
- Observable must be real: Hermitian operators.

Hermitian Operators

Observable must be "real" in the "real" world.

- $\langle\Psi \mid \hat{M} \Psi\rangle=\langle\hat{M} \Psi \mid \Psi\rangle$.

In quantum mechanics, observable must be Hermitian operators.

- $\langle f \mid \hat{M} g\rangle=\langle\hat{M} f \mid g\rangle$ for all f and g.
- $\hat{M}=\hat{M}^{\dagger}=\left[\hat{M}^{T}\right]^{*}$
- $m_{j i}=m_{i j}^{*}$
- Transpose $\left({ }^{T}\right)$ and complex conjugate (${ }^{*}$)

Charles Hermite (1822 ~ 1901)

Eigenvalues and Eigenvectors

Eigenvectors $|\lambda\rangle$ are special vectors that are transformed into scalar multiples of themselves after linear transformation,

$$
\begin{equation*}
\hat{M}|\lambda\rangle=\lambda|\lambda\rangle, \tag{3}
\end{equation*}
$$

where the complex number λ is their eigenvalue. Discriminate between λ and $|\lambda\rangle$.

Eigenvalues and Eigenvectors

How to obtain eigenvectors and eigenvalues?

1. Start from $\hat{M}|\lambda\rangle=\lambda|\lambda\rangle$
2. $(\hat{M}-\lambda I)|\lambda\rangle=|0\rangle$
3. Assuming $|\lambda\rangle$ is nonzero, solve $\operatorname{det}(\hat{M}-\lambda I)$.
4. Solving the characteristic equation, we obtain eigenvalues of \hat{M}.
5. By putting eigenvalues back into the eigenvector equation, we can finally find eigenvectors.

Yes. You have to solve many practice problems of eigenvector equations.

Eigenvalues and Eigenvectors in Quantum Mechanics

Time-independent Schrödinger equation:

$$
\begin{equation*}
\hat{H} \psi=E \psi . \tag{4}
\end{equation*}
$$

Thus, in a perspective of linear algebra

- \hat{H} : operator
- E_{n} : eigenvalues
- ψ_{n} : eigenvectors

Hermitian Operators

- Eigenvalues of a Hermitian operator are always real. They are same as their complex conjugate.
- Two different eigenvectors corresponding two different eigenvalues are orthogonal.
- When two eigenvalues are the same (degeneracy), we can choose two orthogonal eigenvectors (Gram-Schmidt orthogonalization).
- Eigenvectors of a Hermitian operator are a complete set. Any vectors can be decomposed by the sum of eigenvectors.

Real eigenvalues

$$
\begin{aligned}
\hat{M}|\lambda\rangle & =\lambda|\lambda\rangle \\
\langle\lambda| \hat{M}^{\dagger} & =\langle\lambda| \lambda^{*}
\end{aligned}
$$

Suppose that \hat{M} is a Hermitian operator $\left(\hat{M}=\hat{M}^{\dagger}\right)$,

$$
\begin{aligned}
& \hat{M}|\lambda\rangle=\lambda|\lambda\rangle \\
& \langle\lambda| \hat{M}=\langle\lambda| \lambda^{*}
\end{aligned}
$$

Then, we have (applying $\langle\lambda|$ bra or $|\lambda\rangle$ ket),

$$
\begin{aligned}
\langle\lambda| \hat{M}|\lambda\rangle & =\lambda\langle\lambda \mid \lambda\rangle \\
\langle\lambda| \hat{M}|\lambda\rangle & =\lambda^{*}\langle\lambda \mid \lambda\rangle .
\end{aligned}
$$

Therefore the eigenvalues of a Hermitian operator are real $\left(\lambda=\lambda^{*}\right)$.

Orthogonal Eigenvectors

$$
\begin{aligned}
& \hat{M}\left|\lambda_{1}\right\rangle=\lambda_{1}\left|\lambda_{1}\right\rangle, \\
& \hat{M}\left|\lambda_{2}\right\rangle=\lambda_{2}\left|\lambda_{2}\right\rangle,
\end{aligned}
$$

Since \hat{M} is a Hermitian operator,

$$
\begin{aligned}
& \left\langle\lambda_{1}\right| \hat{M}=\lambda_{1}\left\langle\lambda_{1}\right|, \\
& \hat{M}\left|\lambda_{2}\right\rangle=\lambda_{2}\left|\lambda_{2}\right\rangle,
\end{aligned}
$$

Then, we have (applying $\left\langle\lambda_{1}\right|$ bra or $\left|\lambda_{2}\right\rangle$ ket),

$$
\begin{aligned}
\left\langle\lambda_{1}\right| \hat{M}\left|\lambda_{2}\right\rangle & =\lambda_{1}\left\langle\lambda_{1} \mid \lambda_{2}\right\rangle, \\
\left\langle\lambda_{1}\right| \hat{M}\left|\lambda_{2}\right\rangle & =\lambda_{2}\left\langle\lambda_{1} \mid \lambda_{2}\right\rangle .
\end{aligned}
$$

Finally, we have

$$
\left(\lambda_{1}-\lambda_{2}\right)\left\langle\lambda_{1} \mid \lambda_{2}\right\rangle=0 .
$$

Degeneracy and Gram-Schmidt Orthogonalization

If $\lambda_{1}=\lambda_{2}$, we can choose two orthogonal eigenvectors by using Gram-Schmidt orthogonalization. You will prove it (assignment 2).

Eigenvectors Decomposition

When we introduce a set of orthonormal eigenvectors $|i\rangle$, any ket $|A\rangle$ can be represented by a linear combination of the eigenvectors:

$$
\begin{equation*}
|A\rangle=\sum_{i} \alpha_{i}|i\rangle . \tag{5}
\end{equation*}
$$

Where to go next. . .

Unitary Operators and Quantum Dynamics.

