Quantum Dynamics (part 2)

Byungjoon Min
September 17, 2018

Quantum Dynamics

Time Evolution Operator:

$$
|\Psi(t)\rangle=\hat{T}|\Psi(0)\rangle .
$$

Schrödinger's Picture

$$
|\Psi(t)\rangle \rightarrow \hat{T}|\Psi(0)\rangle,
$$

with operators unchanged.

Heisenberg's Picture

$$
\hat{X} \rightarrow \hat{T}^{\dagger} X \hat{T}
$$

with state kets unchanged.

Schrödinger and Heisenberg

Schrödinger and Heisenberg

Schrödinger Equation of Motion

The Schrödinger equation of Motion is given by

$$
i \hbar \frac{d|\Psi(t)\rangle}{d t}=\hat{H}|\Psi(t)\rangle .
$$

Substituting $|\Psi(t)\rangle=\hat{T}|\Psi(0)\rangle$,

$$
i \hbar \frac{d|\hat{T} \Psi(0)\rangle}{d t}=\hat{H}|\hat{T} \Psi(0)\rangle .
$$

It yields, $i \hbar \frac{d \hat{T}}{d t}=\hat{H} \hat{T}$ When \hat{H} is time-independent,

$$
\hat{T}=e^{-i \hat{H} t / \hbar}
$$

Heisenberg Equation of Motion

The expectation value of an observable X at time t is given by

$$
\begin{aligned}
\langle X\rangle & =\langle\Psi(t)| X|\Psi(t)\rangle \\
& =\langle T \Psi(0)| X|T \Psi(0)\rangle \\
& =\langle\Psi(0)| T^{\dagger} X T|\Psi(0)\rangle
\end{aligned}
$$

In the Heisenberg's picture, all state kets remains constant in time $\Psi(0)$, but operators evolve with time as

$$
\begin{equation*}
X(t)=T^{\dagger} X T \tag{1}
\end{equation*}
$$

Heisenberg Equation of Motion

Considering an operator $X(t)=T^{\dagger} X T$ and a Hamiltonian $H(t)=T^{\dagger} H T$,

$$
\frac{d X(t)}{d t}=\frac{d}{d t}\left[T^{\dagger} X T\right]=\frac{d T^{\dagger}}{d t}(X T)+T^{\dagger} X \frac{d T}{d t} .
$$

Since the Schrödinger equation for the time evolution operator is

$$
\frac{d T}{d t}=\frac{1}{i \hbar} \hat{H} T,
$$

the time evolution of the operator is given by

$$
\begin{align*}
\frac{d X(t)}{d t} & =-\frac{1}{i \hbar}\left(T^{\dagger} \hat{H} X T\right)+T^{\dagger} X \frac{1}{i \hbar} \hat{H} T \\
& =\frac{1}{i \hbar}\left[T^{\dagger} X \hat{H} T-\left(T^{\dagger} \hat{H} X T\right)\right] \\
& =\frac{1}{i \hbar}\left[T^{\dagger} X T T^{\dagger} \hat{H} T-\left(T^{\dagger} \hat{H} T T^{\dagger} X T\right)\right] \\
& =\frac{1}{i \hbar}[X(t), H(t)] . \tag{2}
\end{align*}
$$

Heisenberg Equation of Motion

Note that $\left.\left[T^{\dagger} H T, H\right)\right]=\left[H, T^{\dagger} H T\right]=0$, because $\hat{T}=e^{-i \hat{H} t / \hbar}$. It looks obvious but we have to check [see Assignment].

Therefore,

$$
\begin{equation*}
\frac{d H(t)}{d t}=\frac{1}{i \hbar}[H, H]=0 \tag{3}
\end{equation*}
$$

meaning that the Hamiltonian in Schrödinger and Heisenberg pictures are the same and a constant in time.

In general, an observable is a constant of the motion if an observable X satisfies the condition $[X, H]=0$

Decomposition

We introduce a set of orthonormal bases $|i\rangle$ (or simply orthogonal bases of eigenstates)

$$
|A\rangle=\sum_{i} \alpha_{i}|i\rangle .
$$

Then, we can derive some useful relations

$$
\begin{aligned}
&\langle j \mid A\rangle=\langle j| \sum_{i} \alpha_{i}|i\rangle=\sum_{i} \alpha_{i}\langle j \mid i\rangle \\
&=\sum_{i} \alpha_{i} \delta_{i j}=\alpha_{j} . \\
&|j\rangle\langle j \mid A\rangle=\alpha_{j}|j\rangle \\
&|j\rangle\langle j|: \quad \text { projection operator } \\
&|A\rangle=\sum_{i}\langle i \mid A\rangle|i\rangle=\sum_{i}|i\rangle\langle i \mid A\rangle . \\
& \mathbb{1}=\sum_{i}|i\rangle\langle i|: \quad \text { identity operator }
\end{aligned}
$$

Continuous Spectra

For continuous spectra, the identity relation is given by

$$
\int_{-\infty}^{\infty}|x\rangle\langle x| d x=1
$$

Then, a state ket $|A\rangle$ can be represented with an eigenket $|x\rangle$ corresponding to the eigenvalue x as

$$
\begin{aligned}
|A\rangle & =\int_{-\infty}^{\infty} d x|x\rangle\langle x \mid A\rangle \\
& =\int_{-\infty}^{\infty} d x\langle x \mid A\rangle|x\rangle
\end{aligned}
$$

The quantity $\langle x \mid A\rangle$ is a complex function of the position eigenvalue x and the famous wavefunction in quantum mechanics.

Schrödinger Wave Equation

Suppose that $|x\rangle$ represents a simultaneous eigenket of the position operators, $\hat{x}|x\rangle=x|x\rangle$ (Note the orthogonality $\left\langle x \mid x^{\prime}\right\rangle=\delta\left(x-x^{\prime}\right)$). Then, the wavefunction of the system corresponding the a state $|A\rangle$ is

$$
\begin{equation*}
\Psi_{A}=\langle x \mid A\rangle \tag{4}
\end{equation*}
$$

The inner product is

$$
\begin{aligned}
\langle B \mid A\rangle & =\langle B| \int_{-\infty}^{\infty} d x|x\rangle\langle x \mid A\rangle \\
& =\int_{-\infty}^{\infty} d x\langle B \mid x\rangle\langle x \mid A\rangle \\
& =\int_{-\infty}^{\infty} \Psi_{B}^{*} \Psi_{A} d x
\end{aligned}
$$

Schrödinger Wave Equation in the Position Space

The Schrödinger equation of a state S is given by

$$
\begin{aligned}
i \hbar \frac{d \Psi}{d t} & =i \hbar \frac{d\langle x \mid S\rangle}{d t} \\
& =\langle x| \hat{H}|S\rangle \\
& =\langle x| \frac{\hat{p}^{2}}{2 m}+\hat{V}|S\rangle \\
& =\langle x|-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\hat{V}|S\rangle \\
& =\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\hat{V}\right]\langle x \mid S\rangle \\
& =-\frac{\hbar^{2}}{2 m} \frac{d^{2} \Psi}{d x^{2}}+\hat{V} \Psi
\end{aligned}
$$

Schrödinger Wave Equation in the Momentum Space

The wavefunction in the momentum space is

$$
\begin{equation*}
\Phi=\langle p \mid S\rangle, \tag{5}
\end{equation*}
$$

where $|A\rangle$ is a state ket, $|p\rangle$ is a eigenket of the momentum operators.
The Schrödinger equation of a state A is given by

$$
\begin{aligned}
i \hbar \frac{d \Phi}{d t} & =i \hbar \frac{d\langle p \mid S\rangle}{d t} \\
& =\langle p| \hat{H}|S\rangle \\
& =\langle p| \frac{\hat{p}^{2}}{2 m}+\hat{V}(p)|S\rangle \\
& =\left[\frac{\hat{p}^{2}}{2 m}+\hat{V}(p)\right]\langle p \mid S\rangle \\
& =\left[\frac{\hat{p}^{2}}{2 m}+\hat{V}(p)\right] \Phi
\end{aligned}
$$

with $\hat{x}=i \hbar \frac{d}{d p}$.

Commutation Relation

$$
\begin{equation*}
[x, p]=i \hbar \tag{6}
\end{equation*}
$$

$$
\begin{aligned}
{[x, p] f(x) } & =x\left(-i \hbar \frac{d}{d x}\right) f(x)-\left(-i \hbar \frac{d}{d x}\right)[x f(x)] \\
& =x\left(-i \hbar \frac{d f(x)}{d x}\right)+i \hbar f(x)+i \hbar x \frac{d f(x)}{d x} \\
& =i \hbar f(x)
\end{aligned}
$$

$$
[x, p] f(p)=\left(i \hbar \frac{d}{d p}\right)[p f(p)]-p\left(i \hbar \frac{d}{d p}\right) f(p)
$$

$$
=i \hbar f(p)
$$

Fourier Transformation: Position and Momentum Space

Let us consider the momentum eigenkets $\left|p_{x}\right\rangle$ in the coordinate space. Then, $\left\langle x \mid p_{x}\right\rangle$ must satisfy

$$
\begin{aligned}
\langle x| \hat{p}_{x}\left|p_{x}\right\rangle & =p_{x}\left\langle x \mid p_{x}\right\rangle \\
& =-i \hbar \frac{d}{d x}\left\langle x \mid p_{x} .\right\rangle
\end{aligned}
$$

Solving the equation, we find

$$
\left\langle x \mid p_{x}\right\rangle \sim e^{i p x / \hbar}=e^{i k x}
$$

where $p=\hbar k$.

Fourier Transformation: Position and Momentum Space

With the proper normalization, we find

$$
\left\langle x \mid p_{x}\right\rangle=\frac{1}{\sqrt{2 \pi \hbar}} e^{i p x / \hbar}
$$

Then, it is easily shown that

$$
\begin{aligned}
\Psi(x) & =\langle x \mid S\rangle \\
& =\int_{-\infty}^{\infty} d p\langle x \mid p\rangle\langle p \mid S\rangle \\
& =\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} d p e^{i p x / \hbar}\langle p \mid S\rangle \\
& =\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} d p e^{i p x / \hbar} \Phi(p) . \\
\Phi(p) & =\langle p \mid S\rangle \\
& =\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} d x e^{-i p x / \hbar} \Psi(x) .
\end{aligned}
$$

Where to go next. . .

Measurements and the Uncertainty Relation

