Review of Quantum Mechanics I (part 2)

Byungjoon Min
September 3, 2018

Free Particle

$$
\begin{equation*}
\frac{d^{2} \psi}{d x^{2}}=-k^{2} \psi, \quad \text { where } \quad k=\frac{\sqrt{2 m E}}{\hbar} . \tag{1}
\end{equation*}
$$

The general solution of the time-independent Schrödinger equation is

$$
\begin{equation*}
\psi(x)=A e^{i k x}+B e^{-i k x} . \tag{2}
\end{equation*}
$$

Then, taking on the time dependence, $e^{-i E T / \hbar}$,

$$
\begin{equation*}
\Psi(x, t)=A e^{i k\left(x-\frac{\hbar k}{2 m} t\right)}+B e^{-i k\left(x+\frac{\hbar k}{2 m} t\right)} . \tag{3}
\end{equation*}
$$

- Traveling waves (not stationary).
- Not normalizable.

Free Particle

We introduce a wave packet as an initial wave function,

$$
\begin{equation*}
\Psi(x, 0)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \phi(k) e^{i k x} d k \tag{4}
\end{equation*}
$$

Fourier and Inverse Fourier Transform

$$
\psi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \phi(k) e^{i k x} d k \Longleftrightarrow \phi(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \psi(k) e^{-i k x} d x
$$

Then the general separable solution of the free particle is

$$
\begin{equation*}
\Psi(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \phi(x) e^{i\left(k x-\frac{\hbar k^{2}}{2 m} t\right)} d k \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
\phi(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \Psi(x, 0) e^{-i k x} d x \tag{6}
\end{equation*}
$$

Infinite Potential Well

When a particle is in a infinite potential well with

$$
V(x)= \begin{cases}0, & \text { if } 0 \leq x \leq a \tag{7}\\ \infty, & \text { otherwise }\end{cases}
$$

- outside: $\psi(x)=0$
- inside: $\psi(x)$ obeys the time-independent Schrödinger equation with $V=0$

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=E \psi
$$

or

$$
\begin{equation*}
\frac{d^{2} \psi}{d x^{2}}=-k^{2} \psi, \quad \text { where } \quad k=\frac{\sqrt{2 m E}}{\hbar} . \tag{8}
\end{equation*}
$$

General Solution and Boundary Conditions

The general solutions is

$$
\begin{equation*}
\psi(x)=A \sin k x+B \cos k x . \tag{9}
\end{equation*}
$$

Then, boundary conditions are

$$
\begin{equation*}
\psi(0)=\psi(a)=0 \tag{10}
\end{equation*}
$$

because ψ and the derivative of ψ must be continuous.
Applying the condition $\psi(0)=0$, we obtain $B=0$, and hence

$$
\begin{equation*}
\psi(x)=A \sin k x \tag{11}
\end{equation*}
$$

General Solution and Boundary Conditions

Applying the condition $\psi(a)=0$ to $\psi(x)=A \sin k x$, we obtain the quantization of energy

$$
\begin{equation*}
k a= \pm n \pi, \quad \text { with } \quad n=0,1,2, \cdots, \tag{12}
\end{equation*}
$$

where $k=0$ is a trivial solution $(\psi(x)=0)$. Then,

$$
\begin{align*}
k_{n} & =\frac{n \pi}{a}, \quad \text { with } \quad n=1,2,3, \cdots \tag{13}\\
E_{n} & =\frac{\hbar^{2} k_{n}^{2}}{2 m}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}} \tag{14}
\end{align*}
$$

And, the wave functions are

$$
\begin{equation*}
\psi_{n}=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi}{a} x\right) \tag{15}
\end{equation*}
$$

Revisited: Infinite Potential Well

- Symmetry
- The larger the number of nodes, the higher the energy.
- Orthogonality

$$
\int \psi_{m}(x)^{*} \psi_{n}(x) d x=\delta_{m n}
$$

- Completeness

$$
\begin{aligned}
f(x) & =\sum_{n=1}^{\infty} c_{n} \psi_{n}(x) \\
c_{n} & =\int \psi_{n}(x)^{*} f(x) d x
\end{aligned}
$$

Where to go next. . .

We need to go back to some mathematics, linear algebra and vector spaces.

