Solids

Byungjoon Min

December 5, 2018
Department of Physics, Chungbuk National University

Density of States (Free Particles)

Consider particles in a box with $V=L \times L \times L$.

$$
\begin{gathered}
\Psi(x, y, z)=\left(\frac{2}{L}\right)^{3 / 2} \sin \left(k_{x} x\right) \sin \left(k_{y} y\right) \sin \left(k_{z} z\right), \\
E_{n}=\frac{\hbar^{2} k^{2}}{2 m}, \quad k_{x}=\frac{n_{x} \pi}{L}, \quad k_{y}=\frac{n_{y} \pi}{L}, \quad k_{z}=\frac{n_{z} \pi}{L}
\end{gathered}
$$

where n_{x}, n_{y}, and n_{z} are integer. Thus,

$$
k^{2}=\frac{\pi^{2}}{L^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)=\frac{\pi^{2}}{L^{2}} r^{2} .
$$

where $r^{2}=n_{x}^{2}+n_{y}^{2}+n_{z}^{2}=\left(\frac{k L}{\pi}\right)^{2}$.

Density of States (Free Particles)

The total number of states $G(k)$ with k-vectors of magnitude between 0 and k is one-eighth $(1 / 8)$ of the volume of the sphere of radius r,

$$
G(k)=\frac{1}{8} \times \frac{4}{3} \pi r^{3}=\frac{1}{8} \times \frac{4}{3} \pi\left(\frac{k L}{\pi}\right)^{3}
$$

And, the density of states is

$$
g(k) d k=\frac{d G(k)}{d k} d k=\frac{1}{8} \times 4 \pi k^{2}\left(\frac{L}{\pi}\right)^{3} d k=\frac{V k^{2}}{2 \pi^{2}} d k .
$$

Density of States (Electron)

Electrons in solids (metals) are fermions and are not fixed in number. The density of states in k-space is the same as

$$
g(k) d k=\frac{V k^{2}}{2 \pi^{2}} d k
$$

For the density of state in energy space,

$$
\begin{aligned}
\epsilon & =\frac{\hbar^{2} k^{2}}{2 m}, \quad d \epsilon=\frac{\hbar^{2}}{2 m}(2 k) d k, \\
g(\epsilon) d \epsilon & =2 \times \frac{V k^{2}}{2 \pi^{2}} \frac{m}{\hbar^{2} k} d \epsilon=2 \times \frac{V}{2 \pi^{2}} \frac{m}{\hbar^{2}} k d \epsilon \\
& =2 \times \frac{V}{2 \pi^{2}} \frac{m}{\hbar^{2}} \frac{\sqrt{2 m \epsilon}}{\hbar} d \epsilon=\frac{m V}{\pi^{2} \hbar^{3}} \sqrt{2 m \epsilon} d \epsilon,
\end{aligned}
$$

where 2 is for two different spins.

Fermi Energy

Boundary between occupied and unoccupied states in energy space is called the Fermi energy ϵ_{F}. The Fermi energy for free electron gas can be computed as

$$
\begin{aligned}
N & =\int_{0}^{\epsilon_{F}} \frac{m V}{\pi^{2} \hbar^{3}} \sqrt{2 m \epsilon} d \epsilon \\
& =\frac{\left(2 \epsilon_{F} m\right)^{3 / 2}}{3 \pi^{2} \hbar^{3}} V .
\end{aligned}
$$

Defining $\rho=N / V$, the Fermi energy is

$$
\epsilon_{F}=\frac{\hbar^{2}}{2 m}\left(3 \rho \pi^{2}\right)^{2 / 3} .
$$

Total Thermal Energy

The total energy is then

$$
\begin{aligned}
E & =\int_{0}^{\epsilon_{F}} \epsilon g(\epsilon) d \epsilon \\
& =\int_{0}^{\epsilon_{F}} \epsilon \frac{m V}{\pi^{2} \hbar^{3}} \sqrt{2 m \epsilon} d \epsilon \\
& =\frac{m V}{\pi^{2} \hbar^{3}} \sqrt{2 m} \int_{0}^{\epsilon_{F}} \epsilon^{3 / 2} d \epsilon \\
& =\frac{m V}{\pi^{2} \hbar^{3}} \sqrt{2 m} \frac{2}{5} \epsilon_{F}^{5 / 2} \\
& =\frac{\hbar^{2}\left(3 \pi^{2} N\right)^{5 / 3}}{10 \pi^{2} m} V^{-2 / 3}
\end{aligned}
$$

where

$$
\epsilon_{F}=\frac{\hbar^{2}}{2 m}\left(3 \rho \pi^{2}\right)^{2 / 3}
$$

Degeneracy (Exclusion) Pressure

Since $d E=-P d V$,

$$
d E=\frac{\hbar^{2}\left(3 \pi^{2} N\right)^{5 / 3}}{10 \pi^{2} m}\left(-\frac{2}{3}\right) V^{-5 / 3} d V .
$$

And the degeneracy pressure (or quantum pressure) is

$$
\begin{aligned}
P & =\frac{2}{3} \frac{E}{V} \\
& =\frac{2}{3} \frac{\hbar^{2}\left(3 \pi^{2} N\right)^{5 / 3}}{10 \pi^{2} m} V^{-5 / 3} \\
& =\frac{\hbar^{2}\left(3 \pi^{2}\right)^{2 / 3}}{5 m} \rho^{5 / 3} .
\end{aligned}
$$

Bloch's Theorem

Consider a periodic potential,

$$
V(x+a)=V(x) .
$$

The solution to the Schrödinger equation for such a potential should satisfy the condition

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+V(x) \psi=E \psi \\
\psi(x+a)=e^{i K a} \psi(x)
\end{gathered}
$$

Check the dirac's comb and band-gap structure.

