Quantum Mechanics in Three Dimensions

Byungjoon Min
October 4, 2018

Schrödinger Equation in Three Dimensions

Schrödinger equation for the Hamiltonian operator \hat{H} in three dimensions is still given by

$$
i \hbar \frac{\partial \Psi}{\partial t}=\hat{H} \Psi
$$

where the Hamiltonian is

$$
\hat{H}=\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)+V .
$$

By the standard prescription

$$
\hat{p} \rightarrow-i \hbar \nabla, \quad\left(\hat{p}_{i} \rightarrow-i \hbar \frac{\partial}{\partial i}\right)
$$

we finally obtain

$$
\begin{equation*}
i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+V \Psi . \tag{1}
\end{equation*}
$$

General Solution to the Schrödinger Equation

When the potential V is independent of time, the general solution to the Schrödinger equation in three dimensions is

$$
\Psi(\vec{r}, t)=\sum_{n} c_{n} \psi_{n}(\vec{r}) e^{-i E_{n} t / \hbar}
$$

where ψ_{n} is the eigenfunctions with E_{n} of the time-independent Schrödinger equation:

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V \psi=E \psi
$$

Note that the canonical commutation relations satisfy [see Problem (4.1) in Griffith]:

$$
\left[r_{i}, p_{j}\right]=i \hbar \delta_{i j}, \quad\left[r_{i}, r_{j}\right]=\left[p_{i}, p_{j}\right]=0 .
$$

Schrödinger Equation in Spherical Coordinates

$$
x=r \sin \theta \cos \varphi, \quad y=r \sin \theta \sin \varphi, \quad z=r \cos \theta
$$

Spherical coordinate system (r, θ, ϕ)

Spherical Coordinate System

$$
x=r \sin \theta \cos \varphi, \quad y=r \sin \theta \sin \varphi, \quad z=r \cos \theta
$$

Scale factor:

$$
d s_{i}=h_{i} d q_{i}, \quad d s^{2}=\sum_{i}\left(h_{i} d q_{i}\right)^{2}
$$

where

$$
h_{i}^{2}=\frac{\partial x}{\partial q_{i}} \frac{\partial x}{\partial q_{i}}+\frac{\partial y}{\partial q_{i}} \frac{\partial y}{\partial q_{i}}+\frac{\partial z}{\partial q_{i}} \frac{\partial z}{\partial q_{i}} .
$$

In Spherical Coordinate System,

$$
h_{r}=1, \quad h_{\theta}=r, \quad h_{\varphi}=r \sin \theta
$$

Lapalcian operator in Spherical Coordinate System

$$
h_{r}=1, \quad h_{\theta}=r, \quad h_{\varphi}=r \sin \theta
$$

$$
\begin{aligned}
\nabla \psi & =\frac{1}{h_{1}} \frac{\partial \psi}{\partial q_{1}} \hat{q}_{1}+\frac{1}{h_{2}} \frac{\partial \psi}{\partial q_{2}} \hat{q}_{2}+\frac{1}{h_{3}} \frac{\partial \psi}{\partial q_{3}} \hat{q}_{3}, \\
\nabla \cdot V & =\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial q_{1}}\left(V_{1} h_{2} h_{3}\right)+\frac{\partial}{\partial q_{2}}\left(V_{2} h_{3} h_{1}\right)+\frac{\partial}{\partial q_{3}}\left(V_{3} h_{1} h_{2}\right)\right], \\
\nabla^{2} \psi & =\nabla \cdot \nabla \psi \\
& =\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial q_{1}}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial \psi}{\partial q_{1}}\right)+\frac{\partial}{\partial q_{2}}\left(\frac{h_{3} h_{1}}{h_{2}} \frac{\partial \psi}{\partial q_{2}}\right)+\frac{\partial}{\partial q_{3}}\left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial \psi}{\partial q_{3}}\right)\right] .
\end{aligned}
$$

Thus, in spherical coordinates

$$
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} .
$$

Schrödinger Equation in Spherical Coordinates

$$
\begin{array}{r}
-\frac{\hbar^{2}}{2 m}\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta}\left(\frac{\partial^{2} \psi}{\partial \phi^{2}}\right)\right] \\
+V \psi=E \psi
\end{array}
$$

Then, we attempt the method of separation of variables for $V=V(r)$,

$$
\psi(r, \theta, \phi)=R(r) Y(\theta, \phi)
$$

Then, we have radial and angular equations:

$$
\begin{aligned}
& \frac{1}{R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)-\frac{2 m r^{2}}{\hbar^{2}}[V(r)-E]=l(l+1) \\
& \frac{1}{Y}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \phi^{2}}\right]=-l(l+1)
\end{aligned}
$$

Radial Equation

The radial equation of Schrödinger equation:

$$
\frac{1}{R} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)-\frac{2 m r^{2}}{\hbar^{2}}[V(r)-E]=l(l+1)
$$

Introducing a variable $u=r R(r)$, we find

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}+\left[V+\frac{\hbar^{2}}{2 m} \frac{l(l+1)}{r^{2}}\right] u=E u
$$

If we define the effective potential,

$$
V_{e}=V+\frac{\hbar^{2}}{2 m} \frac{l(l+1)}{r^{2}}
$$

we find the equation that is identical to the one-dimensional Schrödinger equation:

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}+V_{e} u=E u \tag{2}
\end{equation*}
$$

Angular Equation

The angular equation of Schrödinger equation:

$$
\frac{1}{Y}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial Y}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} Y}{\partial \phi^{2}}\right]=-l(l+1)
$$

The general solution of Y is called by spherical harmonics:

$$
\begin{equation*}
Y_{l}^{m}(\theta, \phi)=\epsilon \sqrt{\frac{(2 l+1)}{4 \pi} \frac{(l-|m|)!}{(l+|m|)!}} e^{i m \phi} P_{l}^{m}(\cos \theta), \tag{3}
\end{equation*}
$$

where $\epsilon=(-1)^{m}$ for $m \geq 0$ and $\epsilon=1$ for $m \leq 0$ and P_{l}^{m} is the associated Legendre function.

