Time Dependent Perturbation Theory

Byungjoon Min
December 5, 2018
Department of Physics, Chungbuk National University

Quantum Dynamics

Time dependent Schrödinger equation is given by

$$
H|\Psi(t)\rangle=i \hbar \frac{\partial|\Psi(t)\rangle}{\partial t}
$$

The time evolution of wave function is then

$$
|\Psi(t)\rangle=\psi(r) e^{-i E t / \hbar}
$$

where ψ is the solution of the time independent Schrödinger equation

$$
H|\psi\rangle=E|\psi\rangle .
$$

Two Level Systems

Consider a two level system,

$$
\begin{aligned}
H^{0}|a\rangle & =E_{a}|a\rangle, \\
H^{0}|b\rangle & =E_{b}|b\rangle .
\end{aligned}
$$

Thus in general,

$$
|\Psi(t)\rangle=c_{a}|a\rangle e^{-i E_{a} t / \hbar}+c_{b}|b\rangle e^{-i E_{b} t / \hbar}
$$

with $\left|c_{a}\right|^{2}+\left|c_{b}\right|^{2}=1$.

Time Dependent Perturbation Theory

Consider the Hamiltonian

$$
H=H^{0}+H^{1}(t)
$$

Thus,

$$
\left[H^{0}+H^{1}(t)\right]|\Psi(t)\rangle=i \hbar \frac{\partial|\Psi(t)\rangle}{\partial t} .
$$

We then have the following equation:

$$
\begin{aligned}
& H^{0} c_{a}|a\rangle e^{-i E_{a} t / \hbar}+H^{0} c_{b}|b\rangle e^{-i E_{b} t / \hbar}+H^{1} c_{a}|a\rangle e^{-i E_{a} t / \hbar}+H^{1} c_{b}|b\rangle e^{-i E_{b} t / \hbar} \\
= & i \hbar\left[\dot{c_{a}}|a\rangle e^{-i E_{a} t / \hbar}+\dot{c_{b}}|b\rangle e^{-i E_{b} t / \hbar}+c_{a}|a\rangle \frac{\partial}{\partial t} e^{-i E_{a} t / \hbar}+c_{b}|b\rangle \frac{\partial}{\partial t} e^{-i E_{b} t / \hbar}\right] .
\end{aligned}
$$

Canceling out first two terms in the left side and last two terms in the right side, we have $H^{1} c_{a}|a\rangle e^{-i E_{a} t / \hbar}+H^{1} c_{b}|b\rangle e^{-i E_{b} t / \hbar}=i \hbar\left[\dot{c}_{a}|a\rangle e^{-i E_{a} t / \hbar}+\dot{c}_{b}|b\rangle e^{-i E_{b} t / \hbar}\right]$.

Time Dependent Perturbation Theory

$$
H^{1} c_{a}|a\rangle e^{-i E_{a} t / \hbar}+H^{1} c_{b}|b\rangle e^{-i E_{b} t / \hbar}=i \hbar\left[\dot{c_{a}}|a\rangle e^{-i E_{a} t / \hbar}+\dot{c_{b}}|b\rangle e^{-i E_{b} t / \hbar}\right]
$$

Applying $\langle a|$, we have

$$
\begin{aligned}
c_{a} & \langle a| H^{1}|a\rangle e^{-i E_{a} t / \hbar}+c_{b}\langle a| H^{1}|b\rangle e^{-i E_{b} t / \hbar} \\
& =i \hbar\left[\dot{c_{a}}\langle a \mid a\rangle e^{-i E_{a} t / \hbar}+\dot{c_{b}}\langle a \mid b\rangle e^{-i E_{b} t / \hbar}\right] \\
& =i \hbar \dot{c_{a}} e^{-i E_{a} t / \hbar}
\end{aligned}
$$

Then,

$$
\dot{c_{a}}=\frac{1}{i \hbar}\left[c_{a}\langle a| H^{1}|a\rangle+c_{b}\langle a| H^{1}|b\rangle e^{-i\left(E_{b}-E_{a}\right) t / \hbar}\right]
$$

Similarly applying $\langle b|$, we obtain

$$
\dot{c_{b}}=\frac{1}{i \hbar}\left[c_{b}\langle b| H^{1}|b\rangle+c_{a}\langle b| H^{1}|a\rangle e^{i\left(E_{b}-E_{a}\right) t / \hbar}\right]
$$

Time Dependent Perturbation Theory

Typically, diagonal terms in the perturbation are zero, so we have

$$
\begin{gathered}
\dot{c_{a}}=\frac{1}{i \hbar}\langle a| H^{1}|b\rangle e^{-i \omega_{o} t / \hbar} c_{b}, \\
\dot{c_{b}}=\frac{1}{i \hbar}\langle b| H^{1}|a\rangle e^{i \omega_{o} t / \hbar} c_{a} .
\end{gathered}
$$

where $\omega_{o}=\left(E_{b}-E_{a}\right) / \hbar$.
Assuming the initial condition $c_{a}(0)=1$ and $c_{b}(0)=0$, the first order approximation is

$$
\begin{array}{r}
\dot{c_{a}}=0, \\
\dot{c_{b}}=\frac{1}{i \hbar}\langle b| H^{1}|a\rangle e^{i \omega_{o} t / \hbar} .
\end{array}
$$

Then, c_{b} can be obtained as

$$
c_{b}=\frac{1}{i \hbar} \int_{0}^{t}\langle b| H^{1}\left(t^{\prime}\right)|a\rangle e^{i \omega_{o} t^{\prime} / \hbar} d t^{\prime} .
$$

Interaction to Electromagnetic Field

Considering an external electric field $E=E_{0} \cos (\omega t) \hat{k}$, we have the perturbation as

$$
H^{1}=-q E z \cos \omega t
$$

When $\omega_{0} \approx \omega$, the transition probability from the state a to b is

$$
\begin{aligned}
P_{a \rightarrow b}(t) & =\left|c_{b}(t)\right|^{2} \\
& \approx\left(\frac{|p| E_{0}}{\hbar}\right)^{2} \frac{\sin ^{2}\left[\left(\omega_{o}-\omega\right) t / 2\right]}{\left(\omega_{o}-\omega\right)^{2}} .
\end{aligned}
$$

where $p=q\langle b| z|a\rangle$.

