Quantum Dynamics

Byungjoon Min
September 14, 2018

Time-evolution Operators

We introduce the time-evolution operator \hat{T},

$$
\begin{equation*}
|\Psi(t)\rangle=\hat{T}|\Psi(0)\rangle \tag{1}
\end{equation*}
$$

If the ket is initially normalized to unity, it must remain unitarity after time-evolution operations. Therefore, time-evolution operators must be unitary.

- Linear
- Unitary

Unitary Operators

$$
\begin{aligned}
& |\Psi(t)\rangle=\hat{T}|\Psi(0)\rangle, \\
& \langle\Psi(t)|=\langle\Psi(0)| \hat{T}^{\dagger} . \\
& \langle\Psi(0) \mid \Psi(0)\rangle=1, \\
& \langle\Psi(t) \mid \Psi(t)\rangle=1,
\end{aligned}
$$

Then,

$$
\begin{equation*}
\langle\Psi(t) \mid \Psi(t)\rangle=\langle\Psi(0)| \hat{T}^{\dagger} \hat{T}|\Psi(0)\rangle=1 . \tag{2}
\end{equation*}
$$

Therefore, \hat{T} must be an unitary operator, $\hat{T}^{\dagger} \hat{T}=1$.

Unitary Matrix \& Hermitian Matrix

$$
\begin{aligned}
\hat{H} & =\hat{H}^{\dagger} \\
\hat{U}^{-1} & =\hat{U}^{\dagger}
\end{aligned}
$$

If a Hermite operator \hat{H} is given, we can construct the time evolution operator which is unitary

$$
\hat{T}=1-i \epsilon \hat{H}
$$

Check that

$$
\begin{aligned}
\hat{T} \hat{T}^{\dagger} & =(1-i \epsilon \hat{H})\left(1+i \epsilon \hat{H}^{\dagger}\right) \\
& =1+i \epsilon \hat{H}^{\dagger}-i \epsilon \hat{H}+\epsilon^{2} \hat{H}^{2} \\
& \approx 1
\end{aligned}
$$

Quantum Dynamics

$$
\begin{aligned}
&|\Psi(\epsilon)\rangle=\hat{T}|\Psi(0)\rangle \\
&=(1-i \epsilon \hat{H})|\Psi(0)\rangle \\
& \frac{|\Psi(\epsilon)\rangle-|\Psi(0)\rangle}{}=-i \epsilon \hat{H}|\Psi(0)\rangle \\
& \epsilon-|\Psi(0)\rangle=-i \hat{H}|\Psi(0)\rangle \\
& \frac{\partial|\Psi\rangle}{\partial t}=-i \hat{H}|\Psi\rangle .
\end{aligned}
$$

Then, we have the Schrödinger equation $(\hat{H} \rightarrow \hat{H} / \hbar)$:

$$
\begin{equation*}
i \hbar \frac{\partial|\Psi\rangle}{\partial t}=\hat{H}|\Psi\rangle . \tag{3}
\end{equation*}
$$

Changing Basis \& Unitary Matrix

The components of a vector depend on the choice of basis. Let us see how to change bases. The old basis vectors $\left|e_{i}\right\rangle$ are linear transformations of the new ones $\left|f_{i}\right\rangle$.

$$
\begin{aligned}
&\left|e_{1}\right\rangle=U_{11}\left|f_{1}\right\rangle+U_{21}\left|f_{2}\right\rangle+U_{31}\left|f_{3}\right\rangle, \\
&\left|e_{2}\right\rangle=U_{12}\left|f_{1}\right\rangle+U_{22}\left|f_{2}\right\rangle+U_{32}\left|f_{3}\right\rangle, \\
&\left|e_{3}\right\rangle=U_{13}\left|f_{1}\right\rangle+U_{23}\left|f_{2}\right\rangle+U_{33}\left|f_{3}\right\rangle, \\
& \ldots \\
&\left|e_{j}\right\rangle=\sum_{i} U_{i j}\left|f_{i}\right\rangle .
\end{aligned}
$$

In matrix form,

$$
\begin{aligned}
\left|A_{f}\right\rangle & =\hat{U}\left|A_{e}\right\rangle, \\
\hat{U}^{-1}\left|A_{f}\right\rangle & =\left|A_{e}\right\rangle,
\end{aligned}
$$

where e and f represent the basis of vectors.

Changing Basis \& Unitary Matrix

We introduce another operator \hat{H},

$$
\left|B_{e}\right\rangle=\hat{H}\left|A_{e}\right\rangle
$$

Then,

$$
\begin{aligned}
\left|B_{f}\right\rangle & =\hat{U}\left|B_{e}\right\rangle . \\
& =\hat{U} \hat{H}\left|A_{e}\right\rangle . \\
& =\hat{U} \hat{H} \hat{U}^{-1}\left|A_{f}\right\rangle .
\end{aligned}
$$

Similarity transformation is given by

$$
\begin{aligned}
\left|B_{e}\right\rangle & =\hat{H}\left|A_{e}\right\rangle \\
\left|B_{f}\right\rangle & =\hat{U} \hat{H} \hat{U}^{-1}\left|A_{f}\right\rangle .
\end{aligned}
$$

(Advanced) Matrix Diagonalization \& Unitary Matrix

We consider the eigenvector equation:

$$
\begin{aligned}
\hat{H}\left|\alpha^{n}\right\rangle & =\lambda^{n}\left|\alpha^{n}\right\rangle \\
\sum_{j} H_{i j} \alpha_{j}^{n} & =\lambda^{n} \alpha_{i}^{n}
\end{aligned}
$$

Consider an unitary matrix U whose elements are: $U_{i n}=\alpha_{i}^{n}$. Then,

$$
\begin{aligned}
\left(U^{\dagger} H U\right)_{m n} & =\sum_{i j}\left(U^{*}\right)_{i m} H_{i j} U_{j n} \\
& =\sum_{i j}\left(\alpha_{i}^{m}\right)^{*} H_{i j} \alpha_{j}^{n} \\
& =\sum_{i}\left(\alpha_{i}^{m}\right)^{*} \lambda^{n} \alpha_{i}^{n} \\
& =\lambda^{n} \sum_{i}\left(\alpha_{i}^{m}\right)^{*} \alpha_{i}^{n}=\lambda^{n} \delta_{m n} .
\end{aligned}
$$

In conclusion, $U^{\dagger} H U=D_{H}$ where D_{H} is the diagonal matrix whose diagonal elements are eigenvalues of H.

(Advanced) Example of Matrix Diagonalization

$$
\sigma=\left(\begin{array}{cc}
0 & -i \tag{4}\\
i & 0
\end{array}\right)
$$

The eigenvectors of the matrix are

$$
\begin{equation*}
\frac{1}{\sqrt{2}}\binom{i}{1}, \quad \frac{1}{\sqrt{2}}\binom{-i}{1} . \tag{5}
\end{equation*}
$$

Then, $U^{\dagger} \sigma U$ is

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
-i & 1 \tag{6}\\
i & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
i & -i \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Where to go next. . .

Schrödinger's and Heisenberg's Pictures

