Quantum Dynamics

Byungjoon Min September 14, 2018

Time-evolution Operators

We introduce the time-evolution operator \hat{T} ,

$$|\Psi(t)\rangle = \hat{T}|\Psi(0)\rangle.$$
 (1)

If the ket is initially normalized to unity, it must remain unitarity after time-evolution operations. Therefore, time-evolution operators must be unitary.

- Linear
- Unitary

Unitary Operators

$$\begin{split} |\Psi(t)\rangle &= \hat{T} |\Psi(0)\rangle, \\ \langle \Psi(t)| &= \langle \Psi(0)|\hat{T}^{\dagger}, \\ \langle \Psi(0)|\Psi(0)\rangle &= 1,, \\ \langle \Psi(t)|\Psi(t)\rangle &= 1, \end{split}$$

Then,

$$\langle \Psi(t) | \Psi(t) \rangle = \langle \Psi(0) | \hat{T}^{\dagger} \hat{T} | \Psi(0) \rangle = 1. \tag{2}$$

Therefore, \hat{T} must be an unitary operator, $\hat{T}^{\dagger}\hat{T}=1.$

Unitary Matrix & Hermitian Matrix

$$\hat{H} = \hat{H}^{\dagger},$$

$$\hat{U}^{-1} = \hat{U}^{\dagger}.$$

If a Hermite operator \hat{H} is given, we can construct the time evolution operator which is unitary

$$\hat{T} = 1 - i\epsilon \hat{H}.$$

Check that

$$\hat{T}\hat{T}^{\dagger} = (1 - i\epsilon\hat{H})(1 + i\epsilon\hat{H}^{\dagger})$$
$$= 1 + i\epsilon\hat{H}^{\dagger} - i\epsilon\hat{H} + \epsilon^{2}\hat{H}^{2}$$
$$\approx 1$$

Quantum Dynamics

$$|\Psi(\epsilon)\rangle = \hat{T}|\Psi(0)\rangle$$

= $(1 - i\epsilon\hat{H})|\Psi(0)\rangle$

$$\begin{split} |\Psi(\epsilon)\rangle - |\Psi(0)\rangle &= -i\epsilon \hat{H} |\Psi(0)\rangle \\ \frac{|\Psi(\epsilon)\rangle - |\Psi(0)\rangle}{\epsilon} &= -i\hat{H} |\Psi(0)\rangle \\ \frac{\partial |\Psi\rangle}{\partial t} &= -i\hat{H} |\Psi\rangle. \end{split}$$

Then, we have the Schrödinger equation $(\hat{H} \to \hat{H}/\hbar)$:

$$i\hbar \frac{\partial |\Psi\rangle}{\partial t} = \hat{H}|\Psi\rangle.$$
 (3)

Changing Basis & Unitary Matrix

The components of a vector depend on the choice of basis. Let us see how to change bases. The old basis vectors $|e_i\rangle$ are linear transformations of the new ones $|f_i\rangle$.

$$|e_{1}\rangle = U_{11}|f_{1}\rangle + U_{21}|f_{2}\rangle + U_{31}|f_{3}\rangle,$$

$$|e_{2}\rangle = U_{12}|f_{1}\rangle + U_{22}|f_{2}\rangle + U_{32}|f_{3}\rangle,$$

$$|e_{3}\rangle = U_{13}|f_{1}\rangle + U_{23}|f_{2}\rangle + U_{33}|f_{3}\rangle,$$

$$\cdots$$

$$|e_{j}\rangle = \sum_{i} U_{ij}|f_{i}\rangle.$$

In matrix form,

$$|A_f\rangle = \hat{U}|A_e\rangle,$$

$$\hat{U}^{-1}|A_f\rangle = |A_e\rangle,$$

where e and f represent the basis of vectors.

Changing Basis & Unitary Matrix

We introduce another operator \hat{H} ,

$$|B_e\rangle = \hat{H}|A_e\rangle,$$

Then,

$$|B_f\rangle = \hat{U}|B_e\rangle.$$

$$= \hat{U}\hat{H}|A_e\rangle.$$

$$= \hat{U}\hat{H}\hat{U}^{-1}|A_f\rangle.$$

Similarity transformation is given by

$$|B_e\rangle = \hat{H}|A_e\rangle,$$

$$|B_f\rangle = \hat{U}\hat{H}\hat{U}^{-1}|A_f\rangle.$$

(Advanced) Matrix Diagonalization & Unitary Matrix

We consider the eigenvector equation:

$$\hat{H}|\alpha^n\rangle = \lambda^n|\alpha^n\rangle,$$
$$\sum_j H_{ij}\alpha_j^n = \lambda^n\alpha_i^n.$$

Consider an unitary matrix U whose elements are: $U_{in} = \alpha_i^n$. Then,

$$(U^{\dagger}HU)_{mn} = \sum_{ij} (U^*)_{im} H_{ij} U_{jn}$$

$$= \sum_{ij} (\alpha_i^m)^* H_{ij} \alpha_j^n$$

$$= \sum_{i} (\alpha_i^m)^* \lambda^n \alpha_i^n$$

$$= \lambda^n \sum_{i} (\alpha_i^m)^* \alpha_i^n = \lambda^n \delta_{mn}.$$

In conclusion, $U^{\dagger}HU = D_H$ where D_H is the diagonal matrix whose diagonal elements are eigenvalues of H.

(Advanced) Example of Matrix Diagonalization

$$\sigma = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}. \tag{4}$$

The eigenvectors of the matrix are

$$\frac{1}{\sqrt{2}} \begin{pmatrix} i \\ 1 \end{pmatrix}, \quad \frac{1}{\sqrt{2}} \begin{pmatrix} -i \\ 1 \end{pmatrix}. \tag{5}$$

Then, $U^{\dagger} \sigma U$ is

$$\frac{1}{\sqrt{2}} \begin{pmatrix} -i & 1\\ i & 1 \end{pmatrix} \begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} i & -i\\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix}. \tag{6}$$

9

Where to go next...

Schrödinger's and Heisenberg's Pictures