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Boltzmann’s Distribution

Canonical Ensemble describes an equilibrium system which can
exchange energy with a heat bath at a known temperature T . Hence,
its energy Es is not confined and conserved. And, any energy is
allowed. But, the probability distribution P (Es) depending on its
energy E is no longer uniform but is P (Es) ∼ e−βEs .
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Maximum Entropy

The prior probability distribution maximizes entropy while respecting
macroscopic constraints. Now, we have two constraints: normalization∑
i Pi = 1 and average energy

∑
i PiEi = 〈E〉. Applying the Lagrange

multiplier method,

∂

∂P

[
S − λ(

∑
i

Pi − 1)− β(
∑
i

PiEi − 〈E〉)

]

=
∂

∂P

[
−
∑
i

Pi logPi − λ(
∑
i

Pi − 1)− β(
∑
i

PiEi − 〈E〉)

]

=
∑
i

[
− logPi − Pi

d logPi
dPi

− λ− β
∑
i

Ei

]
=
∑
i

[− logPi − 1− λ− βEi] = 0.
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It leads

− logPi − 1− λ− βEi = 0.

Thus,

Pi ∼ e−βEi ,

and finally we obtain

Pi =
e−βEi∑
i e

−βEi
=

1

Z
e−βEi ,

where the normalization factor Z is called as “partition function”,

Z =
∑
i

e−βEi . (1)
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Contact to Heat Bath

Assuming that the composite system of heat bath and the system of
interest is isolated, the distribution for the energy in the system is

P (E) =
Ω(E)ΩB(EB)

ΩT (E + EB)
,

where ΩB is the number of state for the energy in the heat bath and
ΩT is the number of state for the energy in the total system. Taking
the logarithm,

logP (E) = log Ω(E) + log ΩB(ET − E)− log ΩT (ET ),

where ET = E + EB . Expand log ΩB in powers of E,

logP (E) ≈ log Ω(E) + log ΩB(ET )−
(
∂ log ΩB(ET )

∂ET

)
E − log ΩT (ET ).
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logP (E) ≈ log Ω(E) + log ΩB(ET )−
(
∂ log ΩB(ET )

∂ET

)
E − log ΩT (ET )

= log Ω(E)− E
(

1

kB

∂SB(ET )

∂ET

)
+ log ΩB(ET )− log ΩT (ET )

= log Ω(E)− βE − logZ,

where β = 1
kB

∂SB(E)
∂E . Finally we obtain canonical distribution again,

Pi =
e−βEi∑
i e

−βEi
=

1

Z
e−βEi .
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Temperature

What is β in the previous calculation? Consider two energetically
connected systems. Note that

P1(E1) =
Ω1(E1)Ω2(E − E1)

ΩT (E)
,

P2(E2) =
Ω2(E2)Ω1(E − E2)

ΩT (E)
.

At the equilibrium, P1 (P2) is a very sharply peaked function near its
maximum at E∗

1 (E∗
2 ). Thus, we have

dΩ1(E1)Ω2(E − E1)

dE1
= 0.
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dΩ1(E1)Ω2(E − E1)

dE1
=
dΩ1(E1)

dE1
Ω2(E − E1) + Ω1(E1)

dΩ2(E − E1)

dE1

=
dΩ1(E1)

dE1
Ω2(E − E1) + Ω1(E1)

dΩ2(E − E1)

dE1

=
dΩ1(E1)

dE1
Ω2(E2)− Ω1(E1)

dΩ2(E2)

dE2
= 0.

Therefore, we find that

1

Ω1

dΩ1(E1)

dE1
=

1

Ω2

dΩ2(E2)

dE2

dS1

dE
=
dS2

dE
.

At equilibrium, dS1

dE is constant and we define it as

1

T
=
∂S

∂E
. (2)
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Short Summary of Canonical Ensemble

Pi =
1

Z
e−βEi ,

Z =
∑
i

e−βEi ,

β =
1

kB

∂S

∂E
=

1

kBT
.
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The partition function is

Z =
∑
i

e−βEi .

The partition function Z is just the normalization factor.

At the same time, the partition function Z is not just the
normalization factor.

Let us see how to calculate the average energy, the specific heat and
the entropy by using Z.
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Average Energy & Specific Heat

The average energy 〈E〉 is given by

〈E〉 =
∑
i

PiEi =

∑
iEie

−βEi

Z
= − 1

Z

∂
∑
i e

−βEi

∂β

= − 1

Z

∂Z

∂β
= −∂ logZ

∂β
.

The specific heat cv at constant volume is

Ncv =
∂〈E〉
∂T

=
∂〈E〉
∂β

∂β

∂T

= − 1

kBT 2

∂〈E〉
∂β

=
1

kBT 2

∂2 logZ

∂β2
.
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Entropy

The entropy is S = −kB
∑
i Pi logPi. Thus,

S = −kB
∑
i

Pi logPi

= −kB
∑
i

e−βEi

Z
log

[
e−βEi

Z

]
= −kB

Z

∑
i

eβEi [−βEi − logZ]

= kBβ〈E〉+ kB logZ

=
〈E〉
T

+ kB logZ.
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Free Energy

The Helmholtz free energy can be defined by using Z:

S =
〈E〉
T

+ kB logZ,

A = −kBT logZ = 〈E〉 − TS.

The free energy is the energy available to do work. In addition, the
entropy is minus the derivative of A with respect to T ,

∂A

∂T
=
∂ − kBT logZ

∂T

= −kB logZ − kBT
∂ logZ

∂β

∂β

∂T

= −kB logZ − kBT 〈E〉
1

kBT 2

= −kB logZ − 〈E〉
T

= −S.
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Fluctuation of Energy and Susceptibility

Consider again the specific heat cv at constant volume.

Ncv =
∂〈E〉
∂T

=
∂〈E〉
∂β

∂β

∂T

= − 1

kBT 2

∂〈E〉
∂β

= − 1

kBT 2

∂

∂β

∑
iEie

−βEi∑
i e

−βEi

= − 1

kBT 2

[∑
i−E2

i e
βEi

Z
+

(
∑
iEie

−βEi)2

Z2

]
=

1

kBT 2

[
〈E2〉 − 〈E〉2

]
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Microcanonical Ensemble and Canonical Ensemble

Defining energy fluctuation σE =
√
〈E2〉 − 〈E〉2 per particle, since

Ncv =
σ2
E

kBT 2 the energy fluctuation is given as

σE/N =
√
〈E2〉 − 〈E〉2/N

=
√

(kBT )(cvT )/
√
N.

The fluctuation will not change the macroscopic properties at the
thermodynamics limit N →∞ because

σE/N ∼
1√
N
.

Therefore, the constant energy (microcanonical ensemble) and
constant temperature (canonical ensemble) predict the same
macroscopic behavior.
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