Canonical Ensemble (Practice)

Byungjoon Min

Department of Physics, Chungbuk National University
October 19, 2018

Summary of Canonical Ensemble

- Write down the partition function, $Z=\sum_{i} e^{-\beta E_{i}}$.
- Evaluate thermodynamic quantities.
- The free energy $A=-k_{B} T \log Z=\langle E\rangle-T S$.

Also note that the partition function can be expressed in different forms:

$$
\begin{aligned}
Z & =\sum_{i} e^{-\beta E_{i}} \\
Z & =\frac{1}{h^{3 N}} \int e^{-\beta E(q, p)} d q d p, \\
Z & =\int g(E) e^{-\beta E} d E .
\end{aligned}
$$

Classical Gas

The Hamiltonian is given by $H=\frac{p^{2}}{2 m}+V(r)$.

$$
\begin{aligned}
Z & =\frac{1}{h^{3 N} N!} \int e^{-\beta E(q, p)} d q d p \\
& =\frac{1}{h^{3 N} N!} \int d q d p e^{-\beta\left[\sum_{i}^{N} \frac{p^{2}}{2 m}+\sum_{i}^{N} \sum_{i>j}^{N} V\left(r_{i}, r_{j}\right)\right]} \\
& =\frac{1}{h^{3 N} N!} \int d p e^{-\beta\left[\sum_{i}^{N} \frac{p^{2}}{2 m}\right]} \int d q e^{\left[-\beta \sum_{i}^{N} \sum_{i>j}^{N} V\left(r_{i}, r_{j}\right)\right]} \\
& =\frac{1}{h^{3 N} N!}\left(\frac{2 \pi m}{\beta}\right)^{3 N / 2} \int d q e^{\left[-\beta \sum_{i}^{N} \sum_{i>j}^{N} V\left(r_{i}, r_{j}\right)\right]}
\end{aligned}
$$

Classical Ideal Gas

The Hamiltonian is given by $H=\frac{p^{2}}{2 m}$.

$$
\begin{aligned}
Z & =\frac{1}{h^{3 N} N!} \int d q d p e^{-\beta\left[\sum_{i}^{N} \frac{p^{2}}{2 m}\right]} \\
& =\frac{1}{h^{3 N} N!}\left(\frac{2 \pi m}{\beta}\right)^{3 N / 2} \int d q \\
& =\frac{1}{h^{3 N} N!}\left(\frac{2 \pi m}{\beta}\right)^{3 N / 2} V^{N} .
\end{aligned}
$$

Note that $Z=\left(Z_{1}\right)^{N}$ since there are no interactions. Then, all thermodynamic quantities can be derived from Z, such as

$$
A=-k_{B} T \log Z,\langle E\rangle=-\frac{\partial \log Z}{\partial \beta}, N c_{v}=\frac{\partial\langle E\rangle}{\partial T} .
$$

Harmonic Oscillator

The Hamiltonian is given by $H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} q^{2}$.

$$
\begin{aligned}
Z_{1} & =\frac{1}{h} \int d q d p e^{-\beta\left[\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} q^{2}\right]} \\
& =\frac{1}{h} \sqrt{\frac{2 \pi m}{\beta}} \sqrt{2 \pi} \beta m \omega^{2} \\
& =\frac{2 \pi}{h \beta \omega}=\frac{1}{\beta \hbar \omega} .
\end{aligned}
$$

Then, all thermodynamic quantities can be derived from Z, such as

$$
A=-k_{B} T \log Z,\langle E\rangle=-\frac{\partial \log Z}{\partial \beta}, N c_{v}=\frac{\partial\langle E\rangle}{\partial T}=N k .
$$

(Quantum) Harmonic Oscillator

Energy is $\hbar \omega\left(n+\frac{1}{2}\right)$. Thus,

$$
\begin{aligned}
Z_{1} & =\sum_{n} e^{-\beta \hbar \omega\left(n+\frac{1}{2}\right)} \\
& =e^{-\beta \hbar \omega / 2 \sum_{n}^{\infty}}\left(e^{-\beta \hbar \omega}\right)^{n} \\
& =e^{-\beta \hbar \omega / 2} \frac{1}{1-e^{-\beta \hbar \omega}} \\
& =\frac{1}{2 \sinh (\beta \hbar \omega / 2)} .
\end{aligned}
$$

Then, all thermodynamic quantities can be derived from Z, such as

$$
A=-k_{B} T \log Z,\langle E\rangle=-\frac{\partial \log Z}{\partial \beta}, N c_{v}=\frac{\partial\langle E\rangle}{\partial T} .
$$

Two Level System

Energy spectrum of a two level system is given by $E_{0}=-\epsilon$ and $E_{1}=+\epsilon$.

$$
\begin{aligned}
Z_{1} & =\sum_{n} e^{-\beta E_{n}} \\
& =e^{-\beta(-\epsilon)}+e^{-\beta \epsilon} \\
& =2 \cosh (\beta \epsilon)
\end{aligned}
$$

Then, all thermodynamic quantities can be derived from Z, such as

$$
A=-k_{B} T \log Z,\langle E\rangle=-\frac{\partial \log Z}{\partial \beta}, N c_{v}=\frac{\partial\langle E\rangle}{\partial T} .
$$

