Classical Statistical Mechanics

Byungjoon Min

Department of Physics, Chungbuk National University

September 18, 2018

Thermodynamics and Statistical Mechanics

- Thermodynamics: Macroscopic state from macroscopic variables
- Statistical Mechanics: Macroscopic state from microscopic variables
- Classical and Quantum Statistical Mechanics

Thermodynamic Systems

- Isolated system $(E,N,V) \rightarrow$ microcanonical ensemble
- \bullet Closed system (T,N,V) \rightarrow canonical ensemble
- Open system $(T, \mu, V) \rightarrow$ grandcanonical ensemble

Number of State & Ensemble

Counting the number of state $\Omega \sim \Delta x \Delta p$ in the phase space is essential.

Note that we consider a large collections or Ensemble of the system, not a single system.

Fundamental Postulate in Statistical Mechanics

$$P = \frac{1}{\Omega_O},\tag{1}$$

where Ω_O is the total number of possible states. Then, the probability of *i* state is

$$p_i = \frac{\Omega_i}{\Omega_O}.$$
 (2)

And, the expectation value of an observable is

$$\langle X \rangle = \sum_{i} X_{i} p_{i}$$
$$= \frac{\sum_{i} X_{i} \Omega_{i}}{\Omega_{O}}.$$
(3)

Liouville-Gibbs Theorem & Ergodicity

Foundation of the classical statistical mechanics. Liouville-Gibbs Theorem:

$$\frac{d\rho}{dt} = \frac{\partial\rho}{\partial t} + \{\rho, H\} = 0.$$

Ergodicity:

$$\begin{split} \langle f \rangle &= \frac{\int f(q,p)\rho(q,p)dqdp}{\int \rho(q,p)dqdp}.\\ \bar{f} &= \frac{1}{T}\int_0^T f(q,p)dt. \end{split}$$

Density of States

The number of states between the energy E and $E + \Delta E$ is given by

$$\Omega(E, E + \Delta E) = g(E)\Delta E, \qquad (4)$$

where g(E) is the density of states.

Thus, the number (or equivalently density) of state is all that we need to know in microcanonical ensemble.

Thermodynamics and Statistical Mechanics

Where to go next...

A mathematical skill that we need to know in this course, Lagrange multiplier.