Assignment 2

Byungjoon Min, Statistical Mechanics
(due date: September 19, 2018)

1 Lotto [20 pt]

1.1 Winning probability

To win "Lotto" that is a lottery in Korea, one must pick 6 different numbers out of the 45 available. The order of the chosen numbers does not matter. If we buy only one ticket, what are our chances p_{L} of winning Lotto?

1.2 Stirling's Approximation

Compare your answer $\log p_{L}$ of the problem (1.1) with the simple version of Stirling's approximation $(\log n!\approx n \log n-n)$. Note that $\log 45 \approx 3.807, \log 39 \approx 3.664$, and $\log 6 \approx 1.792$.

2 the ratio of males to females in a population [20 pt]

First assume that the probability of a baby being conceived male or female is $1 / 2$. Next assume that in one country, people prefer sons over daughters. So, every couple endlessly tries to conceive until they have one boy. And, just after having a boy, every couple stops to try to get pregnant. Then, what will be the sex ratio if the population of the country is extremely large, $N \rightarrow \infty$. Obtain the ratio by two different approaches.

2.1 Geometric Series

Show that the difference between the number of female and male will be given by following:

$$
\begin{aligned}
N_{f}-N_{m} & =\left(\frac{1}{2}\right)^{1}(-1)+\left(\frac{1}{2}\right)^{2}(0)+\left(\frac{1}{2}\right)^{3}(1)+\left(\frac{1}{2}\right)^{4}(2)+\cdots \\
& =\sum_{n=0}^{\infty} \frac{1}{2^{n+1}}(n-1)
\end{aligned}
$$

And, calculate $N_{f}-N_{m}$ by using the geometric series.

2.2 Independent events

Justify that N events are independent each other. Then, show that the expected value of N_{f} and N_{m} will be the same as $N / 2$ without any other calculations.

3 Poisson Distribution [20 pt]

The Poisson distribution is a limiting case of the binomial distribution when the probability p of success is small and the number n of trials is large.
i) Start with the binomial distribution:

$$
P(x)=\binom{n}{x} p^{x} q^{n-x}
$$

ii) rewrite the distribution in terms of the mean $\lambda=n p$, n , and x :

$$
P(x)=\binom{n}{x}\left(\frac{\lambda}{n}\right)^{x}\left(1-\frac{\lambda}{n}\right)^{n-x}
$$

Show that the distribution becomes the Poisson distribution when $n \rightarrow \infty$:

$$
\lim _{n \rightarrow \infty} P(x)=\frac{e^{-\lambda} \lambda^{x}}{x!}
$$

The Poisson distribution is another important distribution in probability and statistics with many applications (http://en.wikipedia.org/wiki/Poisson_distribution).

