Assignment 3

Byungjoon Min, Statistical Mechanics
(due date: October 3, 2018)

1 Chuseok (Hangawi) [0 pt]

Have a happy Chuseok (Hangawi) with your family!

2 Coin Flip [10 pt]

If a coin is flipped $2 N$ times, show that the probability P_{m} that one can get $N+m$ of them heads is

$$
\begin{equation*}
P_{m}=2^{-2 N} \frac{(2 N)!}{(N+m)!(N-m)!} \tag{1}
\end{equation*}
$$

3 Maxwell Relations [20 pt]

Consider the equilibrium energy $E(S, V, N)$. One knows that the second derivatives of E are symmetric; at fixed N, we get the same answer whichever order we take partial derivatives with respect to S and V. Use this to show the Maxwell relation,

$$
\begin{equation*}
\left(\frac{\partial T}{\partial V}\right)_{S, N}=-\left(\frac{\partial P}{\partial S}\right)_{V, N} \tag{2}
\end{equation*}
$$

4 Lagrange Multipliers [20 pt]

Let

$$
\begin{equation*}
f(x, y)=x^{2}-x y+y^{2} \tag{3}
\end{equation*}
$$

be the temperature distribution in the plane. Let some bug be restricted to live in a circle of radius 5 given by the constraint equation

$$
\begin{equation*}
g(x, y)=x^{2}+y^{2}-25=0 . \tag{4}
\end{equation*}
$$

What is the hottest point in this bug's world?

