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(Advanced) Markov Chain

Markov chain: the lack of memory of their history

state {α} → {β} with a transition probability Pβα.

1 time evolution: ρβ(n+ 1) =
∑
α Pβαρα(n).

2 positivity: 0 ≤ Pβα ≤ 1.

3 conservation of probability:
∑
β Pβα = 1.

4 not symmetric matrix: Pβα 6= Pαβ .

where ρ is the probability distribution.
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(Advanced) Detailed Balance

At equilibrium, they satisfy

P · ρ∗ = ρ∗,

where ρ∗ is the equilibrium state. We introduce the condition of
detailed balance as:

Pαβρβ = Pβαρα.

Then, ∑
α

Pαβρβ =
∑
β

Pβαρα.

ρβ
∑
α

Pαβ =
∑
β

Pβαρα.

ρβ =
∑
β

Pβαρα.

Therefore, we can arrive at the equilibrium state with the detailed
balance condition.
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Metropolis Algorithm

The Hamiltonian of the Ising model is

H = −J
∑
〈ij〉

sisj − h
∑
i

si.

Then, the metropolis algorithm is following:

1 Pick a spin at random.

2 Calculate ∆E with the Ising Hamiltonian.

3 If ∆E < 0, flip the spin. If ∆E > 0, flip the spin with probability
e−β∆E .

[N. Metropolis et al., Equation of state calculations by fast computing
machines, JCP (1953)]
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Metropolis Algorithm

Check two states, 1 and 2 where (E1 ≤ E2).

P (1→ 2)

P (2→ 1)
=
ρ1e
−β(E2−R1)

ρ2 × 1

=
ρ1e
−βE2

ρ2e−βE1
= 1.

Due to the detailed balance, finally we have the Boltzmann
distribution as

ρi ∼ e−βEi .
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