Markov Chain Metropolis Algorithm

Monte-Carlo Simulation

Byungjoon Min

Department of Physics, Chungbuk National University

December 5, 2018

(Advanced) Markov Chain

- Markov chain: the lack of memory of their history
- state $\{\alpha\} \to \{\beta\}$ with a transition probability $P_{\beta\alpha}$.
- time evolution: $\rho_{\beta}(n+1) = \sum_{\alpha} P_{\beta\alpha} \rho_{\alpha}(n).$
- **2** positivity: $0 \le P_{\beta\alpha} \le 1$.
- So conservation of probability: $\sum_{\beta} P_{\beta\alpha} = 1.$
- not symmetric matrix: $P_{\beta\alpha} \neq P_{\alpha\beta}$.

where ρ is the probability distribution.

Markov Chain Metropolis Algorithm

(Advanced) Detailed Balance

At equilibrium, they satisfy

$$P \cdot \rho^* = \rho^*,$$

where ρ^* is the equilibrium state. We introduce the condition of detailed balance as:

$$P_{\alpha\beta}\rho_{\beta} = P_{\beta\alpha}\rho_{\alpha}.$$

Then,

$$\sum_{\alpha} P_{\alpha\beta} \rho_{\beta} = \sum_{\beta} P_{\beta\alpha} \rho_{\alpha}.$$
$$\rho_{\beta} \sum_{\alpha} P_{\alpha\beta} = \sum_{\beta} P_{\beta\alpha} \rho_{\alpha}.$$
$$\rho_{\beta} = \sum_{\beta} P_{\beta\alpha} \rho_{\alpha}.$$

Therefore, we can arrive at the equilibrium state with the detailed balance condition.

Metropolis Algorithm

The Hamiltonian of the Ising model is

$$H = -J\sum_{\langle ij\rangle} s_i s_j - h\sum_i s_i.$$

Then, the metropolis algorithm is following:

- Pick a spin at random.
- **2** Calculate ΔE with the Ising Hamiltonian.
- ◎ If $\Delta E < 0$, flip the spin. If $\Delta E > 0$, flip the spin with probability $e^{-\beta \Delta E}$.

[N. Metropolis et al., Equation of state calculations by fast computing machines, JCP (1953)]

Metropolis Algorithm

Check two states, 1 and 2 where $(E_1 \leq E_2)$.

$$\frac{P(1 \to 2)}{P(2 \to 1)} = \frac{\rho_1 e^{-\beta(E_2 - R_1)}}{\rho_2 \times 1}$$
$$= \frac{\rho_1 e^{-\beta E_2}}{\rho_2 e^{-\beta E_1}} = 1.$$

Due to the detailed balance, finally we have the Boltzmann distribution as

$$\rho_i \sim e^{-\beta E_i}.$$