Microcanonical Ensemble

Byungjoon Min

Department of Physics, Chungbuk National University
September 19, 2018

Information and Entropy

- A measure for the lack of information (ignorance): $s_{i}=-\log P_{i}=\log \frac{1}{P_{i}}$.
- An average ignorance: $S=k_{B} \sum_{i} P_{i} s_{i}=-k_{B} \sum_{i} P_{i} \log P_{i}=-k_{B}\left\langle\log P_{i}\right\rangle$.
- We call S as "entropy" (Shannon's Entropy).
- k_{B} : Boltzmann's constant.

Maximum Entropy

The prior probability distribution maximizes entropy (the average ignorance) while respecting macroscopic constraints. A natural constraint of normalization is $\sum_{i} P_{i}=1$. We have a variational problem

$$
\delta\left[S+\lambda\left(\sum_{i} P_{i}-1\right)\right]=0
$$

where δ stands for the variation with respect to P. To be specific,

$$
\begin{aligned}
& \delta\left[S+\lambda\left(\sum_{i} P_{i}-1\right)\right]=\delta\left[-\sum_{i} P_{i} \log P_{i}+\lambda\left(\sum_{i} P_{i}-1\right)\right] \\
& \quad=\sum_{i}\left[-\left(\delta P_{i}\right) \log P_{i}-P_{i}\left(\delta \log P_{i}\right)+\lambda\left(\delta P_{i}\right)\right] \\
& \quad=\sum_{i}\left[-\left(\delta P_{i}\right) \log P_{i}-P_{i}\left(\frac{d \log P_{i}}{d P_{i}} \delta P_{i}\right)+\lambda\left(\delta P_{i}\right)\right] \\
& \quad=\sum_{i}\left[-\left(\delta P_{i}\right) \log P_{i}-\delta P_{i}+\lambda\left(\delta P_{i}\right)\right]=0
\end{aligned}
$$

Maximum Entropy

$$
\begin{aligned}
\delta\left[S+\lambda\left(\sum_{i} P_{i}-1\right)\right] & =\sum_{i}\left[-\left(\delta P_{i}\right) \log P_{i}-\delta P_{i}+\lambda\left(\delta P_{i}\right)\right] \\
& =\sum_{i}\left[\left(-\log P_{i}-1+\lambda\right) \delta P_{i}\right]=0
\end{aligned}
$$

It leads

$$
-\log P_{i}-1+\lambda=0
$$

Finally, we get

$$
P_{i}=e^{\lambda-1}=\text { const. } \equiv \frac{1}{\Omega}
$$

Boltzmann's Entropy

In an equilibrium state, the probability of i state is given by

$$
p_{i}=\frac{1}{\Omega} .
$$

Then the entropy can be expressed as

$$
\begin{aligned}
S & =-\left\langle\log P_{i}\right\rangle=-\left\langle\log \frac{1}{\Omega}\right\rangle \\
& =\log \Omega .
\end{aligned}
$$

We will interpret the meaning of entropy later.

Boltzmann and Shannon

Ludwig Boltzmann and Claude Shannon

Microcanonical Ensemble

Fixed energy and the number of particles. We define Ω is the accessible volume in phase space with $E \leq H \leq E+\Delta E$.

$$
\Omega=\int_{E \leq H \leq E+\Delta E} d P d Q
$$

where $P=\left(p_{1}, p_{2}, \cdots, p_{3} N\right)$ and $Q=\left(q_{1}, q_{2}, \cdots, q_{3} N\right)$. The probability and the expectation value is then

$$
\begin{aligned}
P & =\frac{1}{\Omega} \\
\langle O\rangle & =\frac{1}{\Omega} \int_{E \leq H \leq E+\Delta E} O(P, Q) d P d Q .
\end{aligned}
$$

Conceptually the microcanonical ensemble approach is extremely simple, in practice it is not so easy.

Ideal Gas in a box

The Hamiltonian of N-ideal gas molecules in a box with volume V :

$$
\begin{equation*}
H=\sum_{i}^{3 N} \frac{p_{i}^{2}}{2 m}+V\left(x_{i}\right) \tag{1}
\end{equation*}
$$

where the potential $V\left(x_{i}\right)$ is given by 0 if $x \in V$ and otherwise $V=\infty$. The number (or volume) of states is

$$
\begin{aligned}
\Omega & =\int_{E \leq H \leq E+\Delta E} d P d Q \\
& =\int d Q \int_{E \leq H \leq E+\Delta E} d P \\
& =\Omega_{Q} \Omega_{P} d P \\
& =V^{N} \Omega(P)
\end{aligned}
$$

since there is $V=0$ in a box.

Momentum Space

The constant energy surface is a sphere in 3 N -dimensional space,

$$
\sum_{i=1}^{3 N}=2 m E=R^{2},
$$

where radius $R=\sqrt{2 m E}$. If we define $\Sigma(E)$ as the volume of region $H \leq E$,

$$
\begin{aligned}
\Omega_{P} & =\int_{E \leq H \leq E+\Delta E} d P \\
& =\Sigma(E+\Delta E)-\Sigma(E) .
\end{aligned}
$$

Then, the volume Σ can be computed as

$$
\begin{aligned}
\Sigma(E) & =\int_{H \leq E} d P \\
& =\int_{\sum_{i=1}^{3 N} p_{i}^{2} \leq 2 m E} d P
\end{aligned}
$$

Volume of n-dimensional Sphere

The volume of n-dimensional sphere with radius R is

$$
\begin{aligned}
V_{N}(R) & =\int_{\sum_{i}^{N} x_{i}^{2} \leq R^{2}} d x_{1} d x_{2} \cdots d x_{N} \\
& =R^{N} \int_{\sum_{i}^{N} y_{i}^{2} \leq 1} d y_{1} d y_{2} \cdots d y_{N} \\
& =R^{N} C_{N}
\end{aligned}
$$

where $C_{N}=\int_{\sum_{i}^{N} y_{i}^{2} \leq 1} d y_{1} d y_{2} \cdots d y_{N}$.

$$
\begin{aligned}
I^{N} & =\sqrt{\pi}^{N}=\left[\int_{-\infty}^{\infty} e^{-x^{2}} d x\right]^{N} \\
& =\int_{-\infty}^{\infty} d x_{1} d x_{2} \cdots d x_{N} e^{-\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{N}^{2}\right)} \\
& =\int_{-\infty}^{\infty} d V_{N}(R) \cdots d x_{N} e^{-\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{N}^{2}\right)}
\end{aligned}
$$

where $d V_{N}(R)=d x_{1} d x_{2} \cdots d x_{N}=N R^{N-1} C_{N} d R$. In n-dimensional polar coordinates,

$$
\begin{aligned}
\sqrt{\pi}^{N} & =\int_{0}^{\infty} N R^{N-1} C_{N} e^{-R^{2}} d R \\
& =C_{N} \frac{N}{2} \int_{0}^{\infty} X^{\frac{N}{2}-1} e^{-X} d X=C_{N} \frac{N}{2} \Gamma\left(\frac{N}{2}\right) \\
& =C_{N} \Gamma(N / 2+1)=C_{N}(N / 2)!
\end{aligned}
$$

where $X=R^{2}$ and $d X=2 R d R$. Therefore,

$$
C_{N}=\frac{\pi^{N / 2}}{(N / 2)!}, \quad V_{N}(R)=R^{N} \frac{\pi^{N / 2}}{(N / 2)!}
$$

Momentum Space

The volume of region $H \leq E$

$$
\begin{aligned}
\Omega_{P} & =\Sigma(E+\Delta E)-\Sigma(E) \\
& =\Delta E \frac{\Sigma(E+\Delta E)-\Sigma(E)}{\Delta E} \\
& \approx \Delta E \frac{d \Sigma(E)}{d E},
\end{aligned}
$$

where

$$
\begin{align*}
\frac{d \Sigma(E)}{d E} & =\frac{d}{d E} \frac{\pi^{3 N / 2}(2 m E)^{3 N / 2}}{(3 N / 2)!} \\
& =\frac{3 N}{2} \frac{\pi^{3 N / 2}(2 m E)^{3 N / 2-1}}{(3 N / 2)!} \\
& =\frac{(2 \pi m)^{3 N / 2} E^{3 N / 2-1}}{(3 N / 2-1)!} \tag{2}
\end{align*}
$$

Number of States \& Entropy

The total number (volume) of states is

$$
\begin{equation*}
\Omega=V^{N} \Delta E \frac{(2 \pi m)^{3 N / 2} E^{3 N / 2-1}}{(3 N / 2-1)!} \tag{3}
\end{equation*}
$$

The entropy is then $k_{B} \log \Omega$, and

$$
\begin{aligned}
\log \Omega & =\log V^{N}+\log \Delta E+\frac{3 N}{2} \log (2 \pi m) \\
& +\left(\frac{3 N}{2}-1\right) \log E-\log (3 N / 2-1)! \\
& \approx N \log V+\frac{3 N}{2} \log (2 \pi m E)-(3 N / 2) \log (3 N / 2)+(3 N / 2)
\end{aligned}
$$

Entropy for Ideal Gas

The entropy is

$$
S \approx N k_{B} \log V+\frac{3 N k_{B}}{2} \log (2 \pi m E)-\left(3 N k_{B} / 2\right) \log (3 N / 2)+\left(3 N k_{B} / 2\right)
$$

$$
\begin{gathered}
\frac{1}{T}=\left(\frac{\partial S}{\partial E}\right)_{V, N}=\frac{3 N k_{B}}{2 E} \\
\frac{P}{T}=\left(\frac{\partial S}{\partial V}\right)_{E, N}=\frac{N k_{B}}{V} .
\end{gathered}
$$

Therefore, we can derive equipartition theorem and the equation of state for the ideal gas,

$$
E=\frac{3}{2} N k_{B} T, \quad P V=N k_{B} T .
$$

