Probability and Statistics

Byungjoon Min

Department of Physics, Chungbuk National University

September 5, 2018

Outline

(1) Discrete Probability Theory

- What is probability?
- Multivariate probability
- Moment
- Binomial distribution
- Stirling's approximation for N !
(2) Continuous Probability Theory
- Probability density
- Dirac Delta Functions
- Gaussian (normal) distribution
(3) Where to go next...

What is Probability?

The asymptotic frequency of success in the limit of an infinite number of trials

$$
\begin{equation*}
p=\lim _{N \rightarrow \infty} \frac{N_{s}}{N} . \tag{1}
\end{equation*}
$$

The probabilities must satisfy the conditions that

$$
\begin{equation*}
0 \leq P(i) \leq 1, \tag{2}
\end{equation*}
$$

for all i. An impossible event has probability zero and a certain event has probability 1 . The normalization condition of the probability distribution is

$$
\begin{equation*}
\sum_{i} P(i)=1 \tag{3}
\end{equation*}
$$

Multivariate Probability

The conditional probability is the probability of an event a, given that an event b has occurred,

$$
\begin{equation*}
P(a \mid b)=\frac{P(a, b)}{P(b)} . \tag{4}
\end{equation*}
$$

When two variables are independent one another,

$$
\begin{aligned}
P(a, b) & =P(a) P(b) \\
P(a \mid b) & =\frac{P(a, b)}{P(b)}=\frac{P(a) P(b)}{P(b)}=P(a)
\end{aligned}
$$

Mean, Variance, and Standard Deviation

The n-th moment of x can be defined as

$$
\begin{equation*}
\left\langle x^{n}\right\rangle=\sum_{i} x^{n} P(i) . \tag{5}
\end{equation*}
$$

Mean, variance, and standard deviation can be expressed as the moments of the probability distribution

$$
\begin{array}{r}
\langle x\rangle=\sum_{i} x P(i), \\
\sigma^{2}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}, \\
\sigma=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}} .
\end{array}
$$

Binomial Distribution

The binomial distribution is given by

$$
\begin{align*}
P(n \mid N) & =\binom{N}{n} p^{n}(1-p)^{N-n} \tag{6}\\
& =\frac{N!}{n!(N-n)!} p^{n}(1-p)^{N-n} .
\end{align*}
$$

It represents the probability distribution of the number of successes (yes-no question) with the probability p, out of total N trials.

Coin Tossing

- $\operatorname{Prob}($ Head $)=1 / 2$ and $\operatorname{Prob}($ Tail $)=1 / 2$
- Let us flip a coin N times.
- What is the probability of getting n heads?

$$
\begin{align*}
P(n \mid N) & =\binom{N}{n} p^{n}(1-p)^{N-n} \tag{7}\\
& =\frac{N!}{n!(N-n)!} p^{n}(1-p)^{N-n} .
\end{align*}
$$

Stirling's Approximation for N !

For large N,

$$
\begin{aligned}
N! & \approx \sqrt{2 \pi N}\left(\frac{N}{e}\right)^{N} \\
\log N! & \approx N \log N-N
\end{aligned}
$$

$$
\begin{aligned}
\log N!\approx \int_{1}^{N} \log x d x & =[x \log x-x]_{1}^{N} \\
& =N \log N-N+1 .
\end{aligned}
$$

Continuous probability theory

Given the probability density $P(x)$, the probability of finding x in an interval $[a, b]$ is

$$
\begin{equation*}
P([a, b])=\int_{a}^{b} P(x) d x \tag{9}
\end{equation*}
$$

The n-th moment of the distribution is

$$
\begin{equation*}
\left\langle x^{n}\right\rangle=\int_{-\infty}^{\infty} x^{n} P(x) d x \tag{10}
\end{equation*}
$$

Dirac Delta Functions

$$
\begin{aligned}
& \delta\left(x-x_{0}\right)= \begin{cases}+\infty, & x=x_{0} \\
0, & x \neq x_{0}\end{cases} \\
& \int_{-\infty}^{\infty} \delta(x) d x=1 . \\
& \int_{-\infty}^{\infty} f(x) \delta(x-\alpha) d x=f(\alpha) \\
& \delta(x-\alpha)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i p(x-\alpha)} d p
\end{aligned}
$$

Gaussian (Normal) Distribution

The Gaussian distribution with the mean x_{0} and the standard deviation σ is given by

$$
\begin{equation*}
g(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{\left(x-x_{0}\right)^{2}}{2 \sigma^{2}}\right] . \tag{11}
\end{equation*}
$$

- Gaussian Integral

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}} \tag{12}
\end{equation*}
$$

Gaussian (Normal) Distribution

- Gaussian approximation to the Binomial Distribution
- Central limit theorem:

Sum of independent and identically distributed random variables with finite variance σ^{2} is converging to the normal distribution with variance σ^{2} in the limit $N \rightarrow \infty$.

We will prove it later.

Where to go next. . .

Let us go to random walk.

