Probability and Statistics

Byungjoon Min

Department of Physics, Chungbuk National University

September 5, 2018

Outline

1 Discrete Probability Theory

- What is probability?
- Multivariate probability
- Moment
- Binomial distribution
- Stirling's approximation for N!

2 Continuous Probability Theory

- Probability density
- Dirac Delta Functions
- Gaussian (normal) distribution

3 Where to go next...

What is probability? Multivariate probability Moment Binomial distribution Stirling's approximation for N!

What is Probability?

The asymptotic frequency of success in the limit of an infinite number of trials

$$p = \lim_{N \to \infty} \frac{N_s}{N}.$$
 (1)

The probabilities must satisfy the conditions that

$$0 \le P(i) \le 1,\tag{2}$$

for all i. An impossible event has probability zero and a certain event has probability 1. The normalization condition of the probability distribution is

$$\sum_{i} P(i) = 1. \tag{3}$$

What is probability? **Multivariate probability** Moment Binomial distribution Stirling's approximation for N!

Multivariate Probability

The conditional probability is the probability of an event a, given that an event b has occurred,

$$P(a|b) = \frac{P(a,b)}{P(b)}.$$
(4)

When two variables are independent one another,

$$P(a,b) = P(a)P(b),$$

$$P(a|b) = \frac{P(a,b)}{P(b)} = \frac{P(a)P(b)}{P(b)} = P(a).$$

What is probability? Multivariate probability Moment Binomial distribution Stirling's approximation for N!

Mean, Variance, and Standard Deviation

The n-th moment of x can be defined as

$$\langle x^n \rangle = \sum_i x^n P(i). \tag{5}$$

Mean, variance, and standard deviation can be expressed as the moments of the probability distribution

$$\begin{split} \langle x \rangle &= \sum_{i} x P(i), \\ \sigma^2 &= \langle x^2 \rangle - \langle x \rangle^2, \\ \sigma &= \sqrt{\langle x^2 \rangle - \langle x \rangle^2}. \end{split}$$

What is probability? Multivariate probability Moment Binomial distribution Stirling's approximation for N!

Binomial Distribution

The binomial distribution is given by

$$P(n|N) = \binom{N}{n} p^n (1-p)^{N-n}$$

$$= \frac{N!}{n!(N-n)!} p^n (1-p)^{N-n}.$$
(6)

It represents the probability distribution of the number of successes (yes-no question) with the probability p, out of total N trials.

What is probability? Multivariate probability Moment Binomial distribution Stirling's approximation for N!

Coin Tossing

- Prob(Head)=1/2 and Prob(Tail)=1/2
- Let us flip a coin N times.
- What is the probability of getting *n* heads?

$$P(n|N) = \binom{N}{n} p^n (1-p)^{N-n}$$
(7)
= $\frac{N!}{n!(N-n)!} p^n (1-p)^{N-n}.$

What is probability? Multivariate probability Moment Binomial distribution Stirling's approximation for N!

Stirling's Approximation for N!

For large N,

$$N! \approx \sqrt{2\pi N} \left(\frac{N}{e}\right)^N, \tag{8}$$
$$\log N! \approx N \log N - N.$$

$$\log N! \approx \int_1^N \log x dx = [x \log x - x]_1^N$$
$$= N \log N - N + 1$$

Probability density Dirac Delta Functions Gaussian (normal) distribution

Continuous probability theory

Given the probability density P(x), the probability of finding x in an interval [a, b] is

$$P([a,b]) = \int_{a}^{b} P(x)dx.$$
(9)

The n-th moment of the distribution is

$$\langle x^n \rangle = \int_{-\infty}^{\infty} x^n P(x) dx.$$
 (10)

Probability density Dirac Delta Functions Gaussian (normal) distribution

Dirac Delta Functions

$$\delta(x - x_0) = \begin{cases} +\infty, & x = x_0 \\ 0, & x \neq x_0 \end{cases}$$
$$\int_{-\infty}^{\infty} \delta(x) dx = 1.$$
$$\int_{-\infty}^{\infty} f(x) \delta(x - \alpha) dx = f(\alpha).$$
$$\delta(x - \alpha) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ip(x - \alpha)} dp.$$

Probability density Dirac Delta Functions Gaussian (normal) distribution

Gaussian (Normal) Distribution

The Gaussian distribution with the mean x_0 and the standard deviation σ is given by

$$g(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-x_0)^2}{2\sigma^2}\right].$$
 (11)

• Gaussian Integral

$$\int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}.$$
(12)

Probability density Dirac Delta Functions Gaussian (normal) distribution

Gaussian (Normal) Distribution

- Gaussian approximation to the Binomial Distribution
- Central limit theorem:

Sum of independent and identically distributed random variables with finite variance σ^2 is converging to the normal distribution with variance σ^2 in the limit $N \to \infty$.

We will prove it later.

Where to go next...

Let us go to random walk.